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An iterative learning control method and mathematical model for
robotic manipulation at undesired locations

XIAO-DONG LI, J. K. L. HO,* and T. W. S. CHOW

City University of Hong Kong, Kowloon Tong, Hong Kong

This paper presents an iterative learning control (ILC) strategy for a robotic manipulator

when objects have to be picked up at undesired locations. The proposed ILC method can

ensure that a robotic manipulator achieves its task in real time following a predetermined

number of control steps. The paper has provided a robotic control strategy and

mathematical formulae for the implementation of a proactive assurance control. The

proactive assurance control can improve the quality of production in terms of

maintaining the production workflow as a fixed value at all times, even though the

components to be assembled are not in their desired locations. This can accelerate the

production process owing to the possibility of eliminating the task of mounting the

components at their exact locations.

Keywords: Iterative learning control, Robotic manipulation, Undesired locations,

proactive assurance

1. Introduction

In assembly processes, robotic manipulators pick and

insert components into a workpiece. The time taken for a

robotic manipulator to carry out the assembly operation

such as picking up a component from a pallet or buffer on

the top of an automatic guided vehicle (AGV) is critical in

terms of workflow balancing. Therefore, it is very

important to keep the time taken at a fixed value for a

robotic manipulator to move from the start point to the

end point of the pre-described trajectory. This is why the

component is usually mounted by a set of fixtures in a

predefined location to achieve a single, pre-described

robot trajectory. Recently, much research has been carried

out to investigate controlling the robotic manipulator to

reach an object at varying locations (Gomi 2003, Hosek

2003, Chandra et al. 2003). It has been reported that the

time taken to reach the objects in different locations is

very difficult to accomplish as a fixed value without

variation. At present, there is a lack of literature

addressing the quality of production in terms of real-time

control strategies, theories, and formulae to interrogate

and control a robotic manipulator to determine if it can

complete its task exactly at a pre-defined number of

control steps, when the components are not in their

desired locations. The objective of this paper is to provide

the theoretical aspect with the mathematical formulae for

the interrogation and the control of a robotic manipulator

to reach a component, even if it is placed in an undesired

location at a pre-defined number of control steps. The

proposed strategy and formulae in the paper can be

implemented as proactive quality assurance schemes that

can handle the unforeseen difficulty of components placed

in undesired locations, but can still prevent the variation

of production workflow. Therefore, the production work-

flow is guaranteed at all times to a pre-defined constant,

regardless of whether the components are placed at their

desired locations. Furthermore, the scheme can accelerate

the production cycle because the effort spent on mounting

the component at the exact location can be eliminated;

this really can improve the quality of production.

ILC has generated considerable research interest since it

was first introduced by Arimoto et al. (1984). The objective

of ILC is to determine a control input so that the tracking

of a given reference signal or the output trajectory over a

fixed time interval is possible. The control inputs are
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updated iteratively after each operation using the error

measurements in the previous cycle. This makes the

application of the ILC approach increasingly important

in many control applications, such as robot manipulators.

Until now, a lot of ILC methods have been presented in the

control field (Arimoto 1984, Moore 1993, Chow and Fang

1998, Chow and Li 2000, Geng and Jamshidi 1990, Geng et

al. 1990, Kurek and Zaremba 1993, Choi and Lee 2000,

Sugie and Ono 1991). The most widely used ILC method is

the proportional-plus-integral-plus-derivative (PID)-type

approach because it essentially forms a PID-like system.

In recent years, two-dimensional (2D) system theory has

successfully been introduced to the ILC approach (Chow

and Fang 1998, Chow and Li 2000, Geng and Jamshidi

1990, Geng et al. 1990, Kurek and Zaremba 1993). Owing

to the two independent dynamic processes of the 2D

system, the 2D model provides an excellent mathematical

platform to describe both the dynamics of the control

system and the behaviour of the learning iteration. Very

promising results on ILC for linear multivariable systems

have been obtained (Chow and Fang 1998, Geng and

Jamshidi 1990, Geng et al. 1990, Kurek and Zaremba

1990).

Section 2 of this paper focuses on the introduction of a

2D system theory and method, which are ILC techniques

for the control of the robotic manipulator. This section

covers the ILC strategy and theorem for the control of a

robotic manipulator and the proof of the formulae. The

proactive assurance control, with a case example illustrat-

ing how the robotic manipulator can be controlled by the

fixed number of control steps to reach the desired location

and the location of deviated from the desired, is also

discussed in section 3. Section 4 presents conclusions.

2. The ILC strategy for controlling a robotic manipulator

A computer-controlled robotic manipulator for assembling

work usually can be described as a linear time-variant

discrete system with delay as follows:

x tþ 1ð Þ ¼ A tð Þx tð Þ þ A0 tð Þx t� tð Þ þ B tð Þu tð Þ ð1aÞ

y tð Þ ¼ C tð Þx tð Þ ð1bÞ

where x(t)2Rn is a state vector, u(t)2Rm is an input vector,

y(t)2Rp is an output vector, t is a time-delay parameter,

and A(t), A0(t), B(t), C(t) are real bounded time-variant

matrices of appropriate dimensions. The initial condition of

the system given in equation (1) is x(t)=f(t) for t=–t,
–t+1, . . ., 0.

It is assumed that a robotic manipulator performs the

operation of picking up a component from an AGV or

buffer, and the component is laid at the desired location P0.

u0(t) is signified as the normal input for driving the robotic

manipulator to the point of P0 at the Nth control step along

a fixed moving path to produce the output trajectory y0(t).

Therefore, y0(N)=P0.

Now we investigate the case of a component that is

placed away from the desired location Pr. The objective of

the investigation is to find an appropriate control input

ur(t) to produce the moving path yr(t) of the robotic

manipulator so that the robotic manipulator can reach the

component at the same control step N, that is yr(N)=Pr.

The ILC strategy is employed to tackle the problem of

the robotic manipulator picking up a component at the

undesired location. For the undesired location Pr of the

component, we can set a moving path yr(t) (t=0,1, . . ., N)

with yr(N)=Pr, which is realizable to equation (1). Then,

we iteratively find the corresponding control input ur(t),

t=0,1,. . .N–1, such that the robotic manipulator follows

the moving path yr(t). Once the control input ur(t) is

obtained, the robotic manipulator can reach the object Pr

at the control step N.

If k denotes learning iteration, a general ILC rule is given

as

ukþ1 tð Þ ¼ uk tð Þ þ Duk tð Þ; t ¼ 0; 1; � � � ;N� 1; ð2Þ

where Du denotes modification of the control input.

Sequentially, the system given in equation (1) can be

modelled as following 2D time-variant form

xk tþ 1ð Þ ¼ A tð Þxk tð Þ þ A0 tð Þxk t� tð Þ þ B tð Þ uk tð Þ ð3aÞ

yk tð Þ ¼ C tð Þ xk tð Þ ð3bÞ

The boundary conditions for the 2D system [equation (3)]

are

xk tð Þ ¼ f tð Þ for t ¼ �t; �tþ 1; � � � ; 0 and k ¼ 0; 1; 2 � � � ;
ð4aÞ

u0 tð Þ for t ¼ 0; 1; � � � ;N� 1: ð4bÞ

Our ILC objective is to find a suitable ILC rule [equation

(2)] such that

lim
k!1

yk tð Þ ¼ yr tð Þ for t ¼ 1; � � � ;N:

Let us denote

Zk tð Þ ¼ xkþ1 t� 1ð Þ � xk t� 1ð Þ; ð5Þ

And

ek tð Þ ¼ yr tð Þ � yk tð Þ: ð6Þ
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Using equations (2) and (3), we obtain for t=0,1, . . . N,

Zk tþ 1ð Þ ¼ xkþ1 tð Þ � xk tð Þ
¼ A t� 1ð ÞZk tð Þ þ A0 t� 1ð ÞZk t� tð Þ þ B t� 1ð ÞDuk t� 1ð Þ

ð7Þ

ekþ1 tð Þ � ek tð Þ ¼ �C tð Þ xkþ1 tð Þ � xk tð Þ½ �
¼ �C tð ÞA t� 1ð ÞZk tð Þ � C tð ÞA0 t� 1ð ÞZk t� tð Þ
� C tð ÞB t� 1ð ÞDuk t� 1ð Þ:

ð8Þ

Applying the following rule to equations (7) and (8),

respectively, for control calculation

Duk tð Þ ¼ K1 tþ 1ð ÞZk tþ 1ð Þ þ K2 tþ 1ð ÞZk t� tþ 1ð Þ
þ K3 tþ 1ð Þek tþ 1ð Þ ð9Þ

where K1(t), K2(t), and K3(t) are bounded, one obtains a 2D

linear time-variant control error system for t=0,1, . . ., N

and k5 0

Zkðtþ 1Þ ¼ ½Aðt� 1Þ þ Bðt� 1ÞK1ðtÞ�ZkðtÞ þ ½A0ðt� 1Þ
þ Bðt� 1ÞK2ðtÞ�Zkðt� tÞ þ Bðt� 1ÞK3ðtÞekðtÞ

ð10aÞ

ekþ1 tð Þ ¼ � C tð ÞA t� 1ð Þ þ C tð ÞB t� 1ð ÞK1 tð Þ½ �Zk tð Þ
� C tð ÞA0 t� 1ð Þ þ C tð ÞB t� 1ð ÞK2 tð Þ½ �Zk t� tð Þ
þ I� C tð ÞB t� 1ð ÞK3 tð Þ½ �ek tð Þ ð10bÞ

where (and afterwards) I is simply used to represent an

identity matrix of appropriate order. Furthermore, let us

make the following matrix denotation

~Zk tð Þ ¼

Zk tð Þ
Zk t� 1ð Þ

..

.

Zk t� tð Þ

2
66664

3
77775;

~A tð Þ ¼

A t� 1ð Þ þ B t� 1ð ÞK1 tð Þ 0 � � � 0 A0 t� 1ð Þ þ B t� 1ð ÞK2 tð Þ
I 0 � � � 0 0

� � � � � � � � � � � � � � �
0 0 � � � I 0

2
6664

3
7775;

~B tð Þ ¼

B t� 1ð ÞK3 tð Þ
0

..

.

0

2
66664

3
77775; ~C tð Þ ¼ C tð Þ 0 � � � 0½ �;

Then, from equation (10), the following 2D linear time-

variant discrete Roessor’s-type model (Geng et al. 1990)

can be derived

~Zk tþ 1ð Þ ¼ ~A tð Þ~Zk tð Þ þ ~B tð Þek tð Þ ð11aÞ

ekþ1 tð Þ ¼ � ~C tð Þ ~A tð Þ~Zk tð Þ þ I� C tð ÞB t� 1ð ÞK3 tð Þ½ �ek tð Þ
ð11bÞ

According to equation (4), the boundary conditions of

the 2D system [equation (11)] are ~Zk 1ð Þ ¼ 0 for k=0,1,2,. . .

and e0(t) for t=1,2,. . .N, which is finite.

For the 2D error system [equation (11)] with the

Roessor’s-type model, which clearly describes the ILC

process for robotic manipulation at undesired locations, we

have the following theorem.

Theorem: For a 2D ILC model [see equation (3)], if there

exist bounded matrices K1(t), K2(t), and K3(t) to make

jjI–C(t)B(t–1)K3(t)jj5 1, t=1,. . ., N, (jj�jj represents the

matrix norm), then the ILC rule

ukþ1 tð Þ ¼ uk tð Þ þ K1 tþ 1ð Þ xkþ1 tð Þ � xk tð Þ½ �
þ K2 tþ 1ð Þ xkþ1 t� tð Þ � xk t� tð Þ½ �
þ K3 tþ 1ð Þek tþ 1ð Þ

ð12Þ

can ensure lim
k!1

~Zk tð Þk k
ek tð Þk k

� �
¼ 0 for t=1, . . ., N.

Proof: (Mathematical induction). As t=1, ~Zk 1ð Þ ¼ 0 for

k=0,1,2,. . .. From equation (11b), we have

ekþ1 1ð Þk k � I� C 1ð ÞB 0ð ÞK3 1ð Þk k � ek 1ð Þk k: ð13Þ

Thus, equation (13) is a contraction in jjek(1)jj as

k??, and limk!1 ek 1ð Þk k ¼ 0, if the condition

jjI-C(1)B(0)K3(1)jj5 1 is satisfied. Sequentially, we have

limk!1
k~Zkð1Þk
kekð1Þk

� �
¼ 0

Assume that for t= l, limk!1
k~ZkðlÞk
kekðlÞk

� �
¼ 0. As a direct

result of equation (11a), limk!1 ~Zk lþ 1ð Þk k ¼ 0 because
~A tð Þ and ~B tð Þ are bounded. Considering the case of
t= l+1, from equation (11b), we have

lim
k!1

ekþ1 lþ 1ð Þk k

� lim
k!1
ð I� C lþ 1ð Þ � B lð Þ � K3 lþ 1ð Þk k � ek lþ 1ð Þk kÞ:

ð14Þ

Therefore, it can be derived from equation (14) that

limk!1 ek lþ 1ð Þk k ¼ 0 if the condition jj1-C(l+1)

B(l)K3(l+1)jj5 1 is satisfied. That is, the statement is

also true for t= l+1. Based on mathematical induction,

we have limk!1
~Zk tð Þk k
ek tð Þk k

� �
¼ 0 for t=1,. . .,N. theorem is

proved.

From theorem, it is noted that limk!1
~Zk tð Þk k
ek tð Þk k

� �
¼ 0 (t=1,

. . ., N) has nothing to do with the matrix K1(t) and K2(t).

For simplicity, we might as well let K1(t)=K2(t)=0 and

K(t)=K3(t) in equation (12), and formulate the following

control formula 1.

Control formula 1: For a 2D ILC model [equation (3)], if

there exists a matrix K(t) to make jjI-C(t)B(t-1)K(t)jj5 1

for t=1, . . ., N, then the ILC rule

482 X.-D. Li et al.
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ukþ1 tð Þ ¼ uk tð Þ þ K tþ 1ð Þek tþ 1ð Þ; ð15Þ

can ensure limk!1
~Zk tð Þk k
ek tð Þk k

� �
¼ 0 for t=1, . . ., N.

Remark (1): Note that the condition jjI-C(t)B(t-1)K(t)jj5 1,

t= 1, . . . N is robust with respect to small perturbations of

the system parameters B(t) and C(t), and does not require

the information of system matrix A(t) and A0(t). Thus, the

control formula 1 is robust.

Remark (2): According to the relation between matrix norm

and spectral radius of matrix, for any given e4 0, there

exists a kind of matrix norm such that

I� C tð ÞB t� 1ð ÞK tð Þk k � r I� C tð ÞB t� 1ð ÞK tð Þð Þ þ E:

ð16Þ

As r(I-C(t)B(t-1)K(t))4 p5 1 for t=1,. . .,N, we take 05
e5 1-p. As a direct result of equation (16), we get jjI-C(t)B(t-
1)K(t)jj5 1 for t=1, . . . N. Therefore, as the sufficient con-

dition in control formula 1 is changed as r(I-C(t)B(t-1)K(t))
4 p5 1, the conclusion of control formula 1 is also true.

Remark (3): The above theorem has been designed for a

linear time-variant discrete model with a single time-delay

in state. However, a similar result can also be obtained for

the ILC problem of a linear time-variant discrete system

with multiple time-delays in state.

Remark (4): Despite the fact that control formula 1

provides a simple form of the ILC rule for robotic

manipulator systems, the existence of the term K1(t+1)

[xk+1(t)-xk(t)]+K2(t+1)[xk+1(t-t)-xk(t-t)] in equation

(12) sometimes can increase the convergence rate of the

ILC rule given in equation (12) or can make the ILC system

present good properties. That can be verified from the

following control formula 2.

One of the important features of the ILC is that it

requires less prior knowledge about the controlled system

in the controller design and set-up phase. From the above

analysis, control formula 1 can ensure a robotic manip-

ulator to pick up an object at an undesired location after

several tries, if the system parameters A(t), A0(t), B(t), and

C(t) of the robotic manipulator are not accurately known.

However, in most cases the system parameters of the

robotic manipulator are identified and set at the system set-

up phase before operation starts. Therefore, the K3(t),

K1(t), and K2(t) can be determined as follows:

K3 tð Þ ¼ C tð ÞB t� 1ð Þð ÞT C tð ÞB t� 1ð Þ C tð ÞB t� 1ð Þð ÞT
h i�1

K1 tð Þ ¼ �K3 tð ÞC tð ÞA t� 1ð Þ and K2 tð Þ
¼ �K3 tð ÞC tð ÞA0 t� 1ð Þ:

Equation (10b) shows e1(t)=0 for t=1, . . . N no matter

what e0(t) is. The robotic manipulator can pick up an object

at the undesired location through a single learning

iteration, i.e. in one attempt. The robotic manipulator

can achieve its task at a given number of control steps in a

real-time tuning control fashion, which is very important in

balancing the workflow during production. On the other

hand, the matrix (C(t)B(t-1))T[C(t)B(t-1)(C(t)B(t-1))T]7 1,

which is the right inverse of matrix C(t)B(t-1), exists if

matrix C(t)B(t-1) has full-row rank. Thus, the following

control formula 2 can be drawn as follows:

Control formula 2: For a 2D ILC model [equation (3)], if

matrix C(t)B(t-1) has full-row rank for t=1, . . ., N, then

the ILC rule [equation (12)] with K3(t)= (C(t)B(t-1)T

[C(t)B(t-1)(C(t)B(t-1))T]7 1, K1(t)= -K3(t)C(t)A(t-1), and

K2(t)= -K3(t)C(t)A0(t-1) drives the control error to zero

for the pre-defined output trajectory yr(t) at t=1, . . ., N

after only one attempt.

3. The proactive assurance control scheme

In this section, the derived theorem is applied to set-up a

proactive assurance control scheme. The scheme consists

of three essential parts. The first part is to interrogate

whether the robotic manipulator has the capability to

reach a component at a pre-defined number of control

steps. This can be achieved by examining whether

C(t)B(t-1) of the robotic manipulator has a full-row rank

for t=1, . . ., N as discussed in control formula 2. If a

full-row rank exists, this indicates that the robotic

manipulator has the ability to pick up the component

placed in the varying location at a pre-defined number of

control steps.

Assuming the dynamics of a robotic manipulator is

modelled as a linear time-variant discrete system with delay

as follows:

x tþ 1ð Þ ¼
�0:24 0:1

0:5 sin tþ 0:04 �3:5

� �
x tð Þ

þ
1 0:001t

�0:4 0:2

� �
x t� 5ð Þ þ

1:3 0:002t

0 1:5

� �
u tð Þ;

ð17aÞ

y tð Þ ¼ 1 0
0 2

� �
x tð Þ; ð17bÞ

where the initial condition x tð Þ ¼ 0
25

� �
for t= 7 5, 7 4,. . .,

7 1.0, and the matrix C(t)B(t–1) has a full-row rank for

t=1, . . ., 30. That means the robotic manipulator can be

controlled to reach an object at a fixed control step.

The second part of the scheme deals with the component

placed in its desired location. The scheme is required to

calculate the pre-programmed control input for the robotic

Robotic manipulation in undesired locations 483
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manipulator to reach the desired location at the pre-defined

number of control steps.

Assuming the component is placed at the desired location

P0= (30, 0) as shown in figure 1, there exists a pre-

programmed control input of the robotic manipulator

u0 tð Þ ¼ u01ðt
u02ðtÞ

h i
, which can be calculated by control formula

1, as shown in figures 2 and 3 to drive the dynamics of

equation (17) to P0 at the 30th control step (t=30 which is

pre-defined) along the trajectory.

y01 tð Þ
y02 tð Þ

� �
¼ 30 cos 0:5p 1� 0:033tð Þð Þ

50 sin 0:5p 1� 0:033tð Þð Þ

� �
: ð18Þ

The third part of the scheme handles the component

placed in an undesired location. The scheme develops the

new trajectory for the undesired location using the

trajectory of the desired location as the reference to

establish the trajectory. Applying control formula 2

calculates the required control input to reach the undesired

location at the pre-defined number of control steps.

Now, assuming that the component is placed at an

undesired location Pr=(37.5, 6) away from the desired P0

as shown in figure 1. For the new pick-up point, the moving

path for the robotic manipulator becomes as follows:

yr tð Þ ¼
yr1 tð Þ
yr2 tð Þ

� �
¼ 30 cos 0:5p 1� 0:033tð Þð Þ þ 0:25t

50 sin 0:5p 1� 0:033tð Þð Þ þ 0:2t

� �

ð19Þ

Along the new moving path yr(t), the robotic manipulator

can definitely reach the pick-up point Pr at the 30th control

step. Consequently, the control of the robotic manipulator

is to find a suitable input ur(t) so that the output of

equation (17) is yr(t).

Let us apply control formula 2 with K3(t)= (C(t)B(t-1)T

[C(t)B(t-1)(C(t)B(t-1))T]7 1, K1(t)= -K3(t)C(t)A(t–1), and

K2(t)=–K3(t)C(t)A0(t–1). Figures 4 and 5 show the results

Figure 1. Moving trajectories of system [equation (17)]

driven by u0(t) and ur(t), respectively. The solid line

represents the motion trajectories of system [equation

(17)] driven by u0(t), and the dashed line represents the

motion trajectories of system [equation (17)] driven by ur(t).

Figure 2. The pre-programmed control input u01(t), which

makes the robotic manipulator pick up an object at the

desired location P0.

Figure 3. The pre-programmed control input u02(t), which

makes the robotic manipulator pick up an object at the

desired location P0.
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of the simulation illustrating that the required control input

ur(t) can be found in a single learning iteration, and the

robotic manipulator reaches the pick-up point Pr along the

trajectory given in equation (19) at the 30th control step.

The errors between the pre-programmed control input u0(t)

and the new produced control input ur(t) are plotted in

figures 6 and 7, respectively. Figure 1 shows the dynamic

trajectories [equations (18) and (19)] of the robotic

manipulator [equation (17)] of both components at the

desired location P0= (30,0) and deviated location

Pr=(37.5, 6).

The time interval for each control step is set to 0.1 s as

the requirement in balancing the production workflow.

This means the robotic manipulator can achieve its task at

3 s exactly. Control formula 2 has provided a real-time

tuning control for the robotic manipulator.

4. Conclusion

The proposed ILC control method for the robotic

manipulator to pick up an object in an undesired location

at a pre-defined number of control steps is guaranteed. As

illustrated, the developed theorem and formulae can be

implemented as a proactive assurance control scheme to

improve the quality of production. The proactive assurance

control can avoid the variation of the production workflow

owing to components placed in undesired locations and can

accelerate the production cycle because the time spent on

mounting the components at the exact locations can be

eliminated.
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