
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 52, NO. 7, JULY 2005 1421

2-D System Theory Based Iterative Learning Control
for Linear Continuous Systems With Time Delays

Xiao-Dong Li, Tommy W. S. Chow, Senior Member, IEEE, and John K. L. Ho

Abstract—This paper presents two-dimensional (2-D) system
theory based iterative learning control (ILC) methods for linear
continuous multivariable systems with time delays in state or
with time delays in input. Necessary and sufficient conditions are
given for convergence of the proposed ILC rules. In this paper,
we demonstrate that the 2-D linear continuous-discrete Roesser’s
model can be applied to describe the ILC process of linear contin-
uous time-delay systems. Three numerical examples are used to
illustrate the effectiveness of the proposed ILC methods.

Index Terms—Iterative control, linear continuous multivariable
system, time delay, two-dimensional (2-D) system theory.

I. INTRODUCTION

I TERATIVE learning control (ILC), firstly introduced in
1984 by Arimoto et al. [4], is well known with its ability

to determine a control input iteratively so that the tracking of a
given reference signal or the output trajectory over a fixed time
interval is possible. It has an appealing capability of modifying
an unsatisfactory control input signal based on the knowledge
of previous operations of the same task. The most common
applications of ILC are in the area of robot control in production
industries. One of the most attractive features of the ILC is that
it requires less a priori knowledge about the controlled system
in the controller design phase.

ILC has generated considerable research interest over the
past years. Until now, there have been a lot of ILC algorithms
presented in the area of control systems [4]–[17], [21]–[23].
Among these different methods, the most widely used ILC
algorithm is the proportional-integral-derivative (PID)-type ap-
proach because it essentially forms a PID-like system. Geng et
al. [13] pointed out that all PID-type ILC techniques inevitably
suffer from a tight restriction, and hence applied the two-di-
mensional (2-D) system theory to ILC schemes. Although
there are certain advantages contributed by the ILC control
schemes, the technical difficulty due to the two-dimensionality
has always been essential and these problems were addressed in
[17]. In fact, one of the main difficulties experienced in the ILC
is the establishment of a suitable mathematical model to clearly
describe the dynamics of the control system and the behavior
of the learning process [13]. It is well known that amid the
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iterative learning process, the interaction between the system
dynamics and the iterative learning process pose an important
and challenging issue for ILC research.

In recent years, 2-D system theory was successfully intro-
duced to the ILC approaches [8]–[14], [24], [25]. Contributing
by the two independent dynamic processes of the 2-D system,
the 2-D model provides an excellent mathematical platform to
describe both the dynamics of the control system and the be-
havior of the learning iteration. In the 2-D system theory based
ILC techniques for linear multivariable systems, very promising
results have been obtained [8], [9], [11]–[14]. Some of the work
focused on the investigation of the ILC techniques for linear dis-
crete multivariable systems [9], [12]–[14]. In [8], the 2-D system
theory based ILC techniques were extended to linear continuous
multivariable systems. Recently, 2-D system theory was applied
to solve the initial ILC condition problem for linear discrete
multivariable systems [11]. More importantly, a new type of 2-D
system theory based ILC rules for linear continuous systems and
linear discrete systems were proposed in [8], [14]. These newly
proposed methods are able to drive the control error to zero with
only one iteration. All of these 2-D system theory based ILC
techniques can be attributed to the rigorous stability theory of
linear repetitive process developed in [24], [25].

Despite the promising results on the area of 2-D system
theory based ILC, it is worth noting that all these work only fo-
cused on linear systems without time delay. Linear time-delay
systems, which exhibit more complicated dynamics, have
difference in essence from linear delay-free systems. And the
study of time-delay systems has become increasingly important
over the past years [1]–[3], [19]–[22] because the issue of time
delay is often encountered in many practical systems such as
actuators, sensors, field networks involved in feedback loops,
and the delays introduced by the computation of robotics
control. It is worth noting that the existence of time delay quite
often degrades the performance of a control system, or even
destabilizes the whole system. Hitherto, a lot of achievements
have been obtained in the area of time-delay system control,
especially in the area of stabilization of time-delay systems
[19], [20], and a detailed review can be found in [1]. But most
of these existing control approaches for time-delay systems
are sensitive to the system uncertainty. They usually require
an accurate mathematical model, which is rather difficult or
even impossible in most practical applications. Naturally, ILC
is found to be a good alternative to deal with the control of
time-delay systems, especially when detailed knowledge about
the plant is not available. However, until now, there have been
only limited works to study this issue [21], [22].
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The main objective of this paper is to further extend the ex-
isting 2-D system theory based ILC techniques for linear mul-
tivariable systems to linear continuous systems with time de-
lays, including time delays in state and time delays in input. In
the study of 2-D system theory based ILC for linear continuous
systems with time delays, first we address the ILC systems with
only a single time delay. We will then extend the derived results
to the cases with multiple time delays. Our strategy is to recon-
struct the derived ILC error equations in a compact form of the
2-D linear continuous-discrete Roessor’s model so that we can
obtain certain convergent ILC rules according to the property of
2-D linear systems.

The organization of this paper is as follows. Section II inves-
tigates the 2-D system theory based ILC techniques for linear
continuous systems with time delays in state, and Section III
dresses the same ILC problem for linear continuous systems
with time delays in input. The simulation results are presented
in Section IV. Finally, Section V concludes this paper.

II. ILC FOR LINEAR CONTINUOUS MULTIVARIABLE SYSTEMS

WITH TIME-DELAYES IN STATE

Consider linear continuous multivariable systems with a
single time delay in state performing a given task repeatedly on
a finite time interval . The systems can be described by
the following differential equations:

(1a)

(1b)

where indicates the number of operation cycle, and is the
continuous-time index running from to to com-
plete a cycle. For all
and are the state vectors, the input vectors and
the output vectors, respectively. is a time-delay parameter,
and are real matrices of appropriate dimensions
that are possibly values estimated. The ILC problem that we
are dealing with is stated as follows. Given system (1) with ini-
tial state , and derivable reference output

, iteratively find an appropriate control input
such that the system output follows the refer-

ence output trajectory for .
Suppose that a general ILC rule for system (1) is given as

(2)

where denotes modification of the control input. The
boundary conditions for the ILC system (1) and (2) are

for

for (3)

It is also assumed that . Based
on these boundary conditions, our ILC objective is to minimize
the tracking error for , where
represents the matrix norm.

Let us denote

(4)

(5)

Considering that and
for and , we have

(6)

And from (4) and (6)

(7)

Let

(8)

then, (6) and (7) become

(9)

(10)

where (and afterwards) is simply used to represent an identity
matrix of appropriate order. Furthermore, let us make the fol-
lowing matrix denotation:
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where (and afterwards) represents the integer part of
value

Then, according to (9) and (10), the following equation in the
compact form can be derived:

(11)

From the denotation of and the boundary conditions (3),
it can be concluded that . Consequently, the 2-D
linear continuous-discrete system (11) is changed into a simpler
form of Roeesor’s type model [18]

(12)

The boundary conditions for the 2-D system (12) are
for and finite for .

Lemma 1: For a 2-D linear continuous-discrete system

(13)

where
, and , and

are the boundary conditions for and finite
for . Then, for all which belong to the interval

as iff the matrix is stable.

The proof can be referred to ([8], Proof of Theorem 1).

It can be noticed that for is

equivalent to for . According

to Lemma 1 and the denotation of in the system (12),

for there exists a matrix

to stabilize the matrix . And it is easy to show that a
matrix exists that stabilize the matrix iff matrix

has full-row rank. On the other hand,

for have nothing to do with the matrices and .
Therefore, for simplicity, we let and in
(8), and formulate the following theorem.

Theorem 1: For a linear continuous multivariable system (1)
with time delay in state, suppose that the desired output is
derivable. There exists an ILC rule

(14)

to make for iff the matrix

has full-row rank.
In addition, according to Lemma 1, the matrixes , and

of (8) can also be selected as other forms in order to obtain
suitable ILC rules with some special properties. The only re-
quirement to , and is to ensure the stability of matrix

. When the system matrices are accu-
rately known, let

It can be shown from (10) that we always have for
no matter what is. Thus, the following theorem

has been proved.
Theorem 2: For a linear continuous multivariable system (1)

with time delay in state, suppose that the desired output is
derivable. An ILC rule

(15)

where

drives the control error to zero for the desired output at the in-
terval after only one learning iteration iff the matrix

has full-row rank.
In Fig. 1, the proposed ILC rule (15) is briefly illustrated.

Undoubtedly, Theorem 2 shows that the ILC rule (15) exhibits
the fastest iterative convergent rate. It is noted that is
not available in (15), estimation or computation of
should be made. In practice, may be replaced
by .

In many practical applications of Theorem 2, the actual values
onparameters arenotavailableandwehavetorelyon
theirestimates.Despiteofthissituation, , thatisevaluatedfrom
theestimatesof ,isabletomaketheeigenvaluesof
insidetheunitecircle.Usingtheresultshownin(12)andLemma1,
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Fig. 1. Block diagram of the proposed ILC rule (15).

it isclearthattheILCrule(15)isstillconvergent.Therobustnessof
theILCrule(15) is illustratedbyusingthefollowingexample1. In
thefollowing,Theorem3provestheILCrule(14)isalsoapplicable
to the ILC problem for linear continuous multivariable systems
with multiple time delays in state.

Theorem 3: For the following linear continuous multivari-
able system with multiple time delays in state

(16a)

(16b)

Suppose that the desired output is derivable. There exists

an ILC rule (14) to make for

iff the matrix has full-row rank.
Proof: Suppose that the initial ILC conditions for system

(16) are , and
for . Similar to the 2-D represen-

tation of (6) and (7) for linear time-delay system (1), the ILC
error model of linear multiple time-delay system (16) using the
ILC rule (14) can be expressed as

(17)

(18)

Let be nonnegative integers. Then, for each
fixed , the number of , which satisfy

, is finite. Based on the value of
from large to small, we list a series of as a
columned-vector , and a series of as
a columned-vector , where .

Considering that as
, from (17) and (18), we have

(19)

where and are upper triangular matrices; and are
diagonal matrices, and all the diagonal elements of are

. According to Lemma 1, Theorem 3 is proved.
Remark: Regarding the ILC problem for the following linear

continuous systems with multiple time delays in state and input

(20a)

(20b)

if we let , then, the system (20) is changed
to the form of the linear continuous multivariable systems (16)
with multiple time delays in state. As a result, our proposed ILC
rule (14) can be easily modified for the application to the linear
continuous systems (20) with multiple time delays in state and
input.

III. ILC FOR LINEAR CONTINUOUS MULTIVARIABLE SYSTEMS

WITH TIME-DELAYS IN INPUT

Next, we consider the ILC problem for the linear continuous
multivariable system with a single time delay in input

(21a)

(21b)

Our objective is to find an appropriate control input
iteratively such that the system output

follows the derivable reference output at the time interval
. The boundary conditions for the 2-D linear contin-

uous-discrete system (21) with the general ILC rule (2) are

for

for (22)

Using the definition (4), (5), and (21), and following a similar
deriving procedure of (6), (7), we have

(23)

(24)

Considering (21) and its boundary condition (22), we are able
to denote that and at the time interval

for .
Let

(25)
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then, (23) and (24) become

(26)

(27)
Let us make the following matrix denotation:

and the equation shown at the bottom of the page.
Then, according to (26) and (27), the following equation in

the compact form can be derived:

(28)

From the expression of , we know . Con-
sequently, the 2-D linear continuous-discrete system (28) is
changed into a simpler form of Roessor’s type model

(29)

The boundary conditions for the 2-D system (29) are
for and finite for .

Similar to the case of ILC for linear continuous system (1) with

time delay in state, it is also noticed that

for is equivalent to for

. According to Lemma 1 and the denotation of

in the system (29), for there

exists a matrix to stabilize the matrix . And,

TABLE I
(EXAMPLE 2) TOTAL SQUARED ERROR OF ILC TRACKING PERFORMANCE AT

FOUR DIFFERENT TIME INTERVALS t 2 [0; 1], AND AT DIFFERENT ITERATIONS

USING ILC RULE (31)

for has nothing to do with the

matrix . Letting and in (25), we can then
formulate the following theorem.

Theorem 4: For a linear continuous multivariable system
(21) with time delay in input, suppose that the desired output

is derivable. There exists an ILC rule

(30)

to make for iff the matrix

has full-row rank.
In addition, under the stability requirement of matrix

, the matrices and in (25) can also be selected
as other forms in order to obtain suitable ILC rules with some
special properties. It is worth noting that unlike the case of
Theorem 2 for linear continuous system (1) with time delay
in state, there normally does not exist an ILC rule in the form
of (25) to make for because of the ef-
fect of time delay in the input. But it is important to point out
that (27) demonstrates a rapid and interesting convergence char-
acteristic that when , and

, the control error of the desired
output is able to converge to zero in an ordered way of a time in-
terval, which is the unit delay time, when the number of learning
iteration increases. This effect can be best demonstrated in later
results of Table I. This convergence characteristic can be ex-
pressed in the following theorem, and the corresponding ILC
rule (31) is illustrated in Fig. 2.

Theorem 5: For a linear continuous multivariable system
(21) with time delay in input, suppose that the matrix has
full-column rank, and the desired output is derivable.
There exists an ILC rule

(31)
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Fig. 2. Block diagram of ILC rule (31).

where

to make at the interval for
iff the matrix has full-row rank.

Proof (Mathematical induction): We have
at the interval for

according to the initial ILC conditions. From the denotation of
and error (27), it can be derived that at the

interval for iff the matrix has full-row rank.
So the statement is true for .

Assume that as , we have at the interval
for . Then let , we prove

at the interval for .
As and , it has been assumed that

and , namely,
. If the matrix has full-column rank, we obtain

. Furthermore, it is derived that
. From the denotation of and (27), we

have at the interval for
iff the matrix has full-row rank. Theorem 5 is proved.

Theorem 5 ensures that the ILC rule (31) can drive the control
error to zero at the interval after a finite number of
iteration. Similar to Theorem 2, a strategy of computing

in ILC rule (31) should be employed in practice.
Additionally, from the ILC rule (25) and the extended denota-

tion that and at the time interval
for , we have

. Initial input can be randomly selected,
thus, there exist much kinds of control input that can drive the
system output to the desired reference output. That is, a distin-
guished character that differ the control system with time delay
in the input from other kinds of control system.

Similar to the case of Theorem 2, Theorem 5 also requires
accurate information on parameters . In many practical
applications, only estimates of are given. Despite of
this situation, , that is elaborated from the estimates, is able
to make the eigenvalues of inside the unite circle.
The ILC rule (31) is still convergent but with a slightly lower
convergent rate.

Theorem 4 can also be extended to more general linear con-
tinuous systems that include multiple time delays in input. As a
result, the following theorem is obtained.

Theorem 6: For the following linear continuous multivari-
able system with multiple time delays in input

(32a)

(32b)

where . Suppose that the desired output
is derivable. There exists an ILC rule

(33)

to make for iff the matrix

has full-row rank.
Proof: Let us extend the denotation of the initial ILC con-

ditions for system (32) to and at
the time interval for . Similar
to the 2-D representation of (23) and (24) for linear time-delay
system (21), the ILC error model of linear system (32) with mul-
tiple time delays can be derived as

(34)

(35)

Applying to (34)
and (35), we have

(36)

(37)

Let be nonnegative integers, and satisfy
. Then, for each fixed , the number

of , is
finite due to . Based on the value of

from large to small, we list a series
of as a columned-vector ,
and a series of as a columned-vector

, where . Considering that
as ,

from (36) and (37), we have

where and are diagonal matrices; and are upper
triangular matrices, and all the diagonal elements of are

. According to Lemma 1, Theorem 6 is proved.
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Fig. 3. (Example 1) Outputs of the ILC system for the linear time-delay system
(38) using ILC rule (14). The dotted, dashed-dotted, and dashed lines represent
the ILC system outputs y (t) when the ILC rule has executed 3, 4, and 5 times,
respectively, and the solid line represents the desired output y (t).

IV. SIMULATION STUDIES

Example 1: Consider an ILC problem of the following linear
continuous multivariable system with time delay in state

(38a)

(38b)

where and .
The initial value of state variable is for

. The desired output is described as

In the ILC process of system (38), for
and , and for

are assumed. The accuracy of ILC is evaluated by the following
total square error of tracking

First, we apply the proposed ILC rule (14) to a linear
continuous system (38) with time delay in state, and set

, which can stabilize the matrix .

In this example, two different types of outputs were studied.
Figs. 3 and 4 show the tracking performance of the ILC system
for the two different outputs at the interval when the
ILC rule (14) is iteratively executed for different times. Also,
Fig. 5 shows the curves of the total squared error of tracking in
the process of ILC rule (14) being iteratively executed. From
Figs. 3–5, it can be noticed that the convergence rate is high and
the outputs are capable of approaching the desired trajectories
accurately within few iterations.

Fig. 4. (Example 1) Outputs of the ILC system for the linear time-delay system
(38) using ILC rule (14). The dotted, dashed-dotted, and dashed lines represent
the ILC system outputs y (t) when the ILC rule has executed 6, 7, 8 times,
respectively, and the solid line represents the desired output y (t).

Fig. 5. (Example 1) It shows the total squared error at the interval t 2 [0; 1] at
different numbers of iterations using ILC rule (14). The solid line represents the
curve of total square error of ILC system output y (t) to y (t), and the dotted
line represents the curve of total squared error of the ILC system output y (t)
to y (t).

Next, the ILC rule (15) with

is used. As expected, it practically drives the tracking error to
zero for the desired output at the interval after only
one learning iteration. Finally, provided that the accurate infor-
mation on parameters in system (38) is unavailable,
and only estimation is given as
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Fig. 6. (Example 1) Outputs of the ILC system for the linear time-delay system
(38) using ILC rule (15) with estimated system parameters. The dotted, and
dashed lines represent the ILC system outputs y (t) as the ILC rule (15) is
iteratively executed 1, 2 times, respectively. The solid line represents the desired
output y (t).

Fig. 7. (Example 1) Outputs of the ILC system for the linear time-delay system
(38) using ILC rule (15) with estimated system parameters. The dotted, and
dashed lines represent the ILC system outputs y (t) as the ILC rule (15) is
iteratively executed 1, 2 times, respectively. The solid line represents the desired
output y (t).

then the determined

can result in small matrices
, and . Because the eigenvalues of

are inside the unite circle, the ILC rule (15) is still convergent.
Figs. 6–8 show that it takes few more iterations for the ILC
rule (15) to drive the tracking error to a very low level for the
whole desired output. Our simulation results illustrate that the
proposed ILC rules in the form of (8) are robust with respect to
small perturbations of the system parameters.

Example 2: In this example, we consider the following linear
continuous multivariable system with time delay in input

(39a)

Fig. 8. (Example 1) It shows the total squared error at the interval t 2 [0; 1]
at different numbers of iterations using ILC rule (15) with estimated system
parameters. The solid line represents the total squared error of ILC system
output y (t) to y (t). The dotted line represents the total squared error of ILC
system output y (t) to y (t).

Fig. 9. (Example 2) It shows the outputs of the ILC system for the linear
time-delay system (39) using ILC rule (30). The dotted, dashed-dotted, and
dashed lines represent the ILC system outputs y (t) as the ILC rule (30) is
iteratively executed 3, 4, 5 times, respectively, and the solid line represents the
desired output y (t).

(39b)

where and . The
initial value of state variable is , and the initial
value of input is for . The
desired output is described as

In the ILC process of system (39), and
for and are assumed.

Similar to example 1, we firstly apply the proposed ILC rule (30)
to the linear continuous system (39) with time delay in input,

and set , which can stabilize the matrix

. Figs. 9 and 10 show the tracking performance of the ILC
system output at the interval when the ILC rule (30)
is iteratively executed at different times. Also, Fig. 11 shows
curves of the total squared error of tracking under the iterative
execution of the ILC rule (30).
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Fig. 10. (Example 2) Outputs of the ILC system for the linear time-delay
system (39) using ILC rule (30). The dotted, dashed-dotted, and dashed lines
represent the ILC system outputs y (t) as the ILC rule (30) is iteratively
executed 4, 5, 6 times, respectively, and the solid line represents the desired
output y (t).

Fig. 11. (Example 2) The total squared error at the interval t 2 [0; 1] at
different numbers of iteration using the proposed ILC rule (30). The solid line
represents the curve of total square error of ILC system output y (t) to y (t),
and the dotted line represents the curve of total square error of ILC system output
y (t) to y (t).

When the ILC rule (31) with
and is used

in the same system, Table I shows the total squared error of ILC
tracking performance at the different time intervals
when ILC rule (31) is iteratively executed different times. It
can be noticed that the tracking error is driven to zero for the
desired output at the interval only after four times of
learning iteration. From Table I, Theorem 5 is verified. It is
worth noting that if the desired output is to be extended
to the time interval , according to Theorem 5 the
ILC rule (31) is able to drive the tracking error to zero for the
desired output at the interval only after six times of
learning iteration.

Example 3: In this example, the following linear continuous
multivariable system with multiple time delays is studied:

Fig. 12. (Example 3) The total squared error at the interval t 2 [0; 1] at
different numbers of iterations using the proposed ILC rule (14). The solid line
represents the curve of total square error of ILC system output y (t) to y (t),
and the dotted line represents the curve of total squared error of ILC system
output y (t) to y (t).

(40a)

(40b)

where and .
The initial value of state variable is for

. The desired output is described as

In the ILC process of system (40), for
and , and for

are assumed. We apply the proposed ILC rule (14) to the linear
continuous system (40) with multiple time delays in state, and

set , which can stabilize the matrix .

Fig. 12 shows the curves of the total squared error of tracking
two different outputs in the process of ILC rule
(14) being iteratively executed. The convergence of ILC rule
(14) for linear continuous system with multiple time delays in
state is hence verified.

The presented results illustrate that the proposed ILC ap-
proaches for linear continuous time-delay systems are very ef-
fective. They are able to track the desired output trajectory for
the whole time interval after less iteration. It is clear that the
ILC rules (14) and (30) are simple. Despite the relatively com-
putational complexity of ILC rules (15) and (31), they are more
effective in terms of its tracking error convergence.

V. CONCLUSION

In an ILC process, the main technical difficulty is usually
caused by the interaction between the system dynamics and the
iterative learning process. Linear continuous multivariable sys-
tems with time delays have more complex dynamics than gen-
eral linear systems. Using the 2-D linear continuous-discrete
Roesser’s model, this paper describes the ILC process for linear
continuous multivariable systems with time delays in state or
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with time delays in the input. As a result, several ILC rules
are derived based on the convergent property of 2-D Roesser’s
model. Necessary and sufficient conditions for convergence of
the proposed ILC rules are given in the form of theorems. It is
important that the convergence of the proposed ILC rules is ro-
bust with respect to small perturbation of the system parameters.
Finally, it is worth noting that the computation of the ILC rule
(15) and (31) may require knowledge on the internal states of the
ILC systems, and additional observers will then be employed as
a result.
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