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Abstract

In this paper, a growing hierarchical self-organizing quadtree map (GHSOQM) is proposed and used for a content-based
image retrieval (CBIR) system. The incorporation of GHSOQM in a CBIR system organizes images in a hierarchical structure.
The retrieval time by GHSOQM is less than that by using direct image comparison using a flat structure. Furthermore, the
ability of incremental learning enables GHSOQM to be a prospective neural-network-based approach for CBIR systems. We
also propose feature matrices, image distance and relevance feedback for region-based images in the GHSOQM-based CBIR
system. Experimental results strongly demonstrate the effectiveness of the proposed system.
� 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The technology for computing and storage has been
rapidly evolved that people can collect and store infor-
mation from a wide range of sources at rates that were
unprecedentedly experienced a few years before. Digital
images and videos are becoming more commonly used
everywhere while the production of such multimedia in-
formation is growing at an unbelievable rate. To access,
retrieve and browsing the large-scale digital images have
become a very challenging and important task.

Content-based image retrieval (CBIR) is one of the most
effective techniques for retrieving semantically relevant im-
ages from unlabelled image data sets based on automati-
cally extracted features. It has been an ongoing research sub-
ject for more than a decade[1]. It usually retrieves relevant
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images based on the image comparison of visual contents,
such as color, texture, shape, structure, etc. One of the prob-
lems associated with CBIR is that there is not an accepted
standard criterion for judgement of relevancy of retrieved
images. Human subjectivity is indispensable for the evalu-
ation of CBIR system. Therefore it is difficult to compare
the retrieved results from different CBIR systems.

A few CBIR systems have been implemented in recent
years. The well-known and is the query by image content
(QBIC) [2] developed at IBM is one of the earliest well-
known commercial system. Other commercial systems are
IBM T. J. Watson[3], VIRAGE [4], NEC AMORE[5], Bell
Laboratory WALRUS[6], etc. MIT photobook[7] is one of
the earliest academic CBIR systems. Other academic CBIR
systems developed in recent years are Berkeley Blobworld
[8], Columbia VisualSEEK and WebSEEK[9], CMU Infor-
media[10], UCSB NeTra[11], UCSD [12], University of
Maryland[13], Standford EMD[14] and WBIIS[15], PSU
SIMPLIcity [16], etc.

The simplest form of storing images is to arrange im-
ages in a flat structure. When a new image is queried, it is
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compared with all images stored in a database and the re-
turned images are sorted according to image distances. The
computational complexity of direct query without feedback
is O(n), wheren is the number of images in the database.
When new images are added into the databases, no extra
steps are required to handle with the flat structure. The im-
age query time can be reduced if images are organized in
a hierarchical tree structure rather than a flat structure. TS-
SOM [17] is such a tree-structured vector quantization al-
gorithm that uses self-organizing map (SOM)[18] at each
of its hierarchical levels. With neurons arranged in a tree
structure, TS-SOM is able to reduce the computational com-
plexity of search toO(logN). PicSOM[19,20] is a neural-
network-based CBIR system that utilizes TS-SOM. Images
are organized hierarchically from coarse top levels to pre-
cise bottom levels in PicSOM. The searching time of Pic-
SOM is faster than that by the systems using the flat im-
age structure. A problem of TS-SOM is that the number of
neurons at thenth level is 2n for 1-D SOM or 4n for 2-D
SOM. Whenn is 6 or more for a 2-D SOM, the number of
neurons at the bottom level will exceed 4096. As a result,
substantial computational effort is required. Furthermore, at
such bottom level, a considerable number of neurons are not
associated with images and is therefore wasteful. Another
problem of TS-SOM in PicSOM is that it is used in a static
environment where all training images are collected before
training. In most real world applications, more new images
are required to be added into the old database and TS-SOM
must retrain the network by using all old and new images
together. Apparently, this poses a major problem for the in-
cremental learning of TS-SOM, whilst the aforesaid direct
query does not experience such a problem.

In this paper, we propose a region-based CBIR system
using a growing hierarchical self-organizing quadtree map
(GHSOQM). Each image in our proposed CBIR system is
firstly segmented into several regions. Each region has sim-
ilar features for colors and textures. Each image is thus rep-
resented by a region-based feature matrix. Different images
may have different number of regions. As far as the authors
are aware, there, hitherto, has not been a definition of feature
matrices for neurons in neural networks. We propose that all
neurons in GHSOQM have a fixed number of row vectors in
feature matrices, which means that all neurons represent im-
ages with fixed number of regions in feature space. This en-
ables us to deal with neurons in neural-network-based CBIR
systems. We also propose a new criterion for image distance
that can be applied to region-based representation of images.
The similarity between images is measured by the distance
criterion. The more similar the two images, the smaller the
distance between them will be. GHSOQM organizes images
in hierarchical levels like TS-SOM. Since SOM usually de-
fines an elastic topology-preserving net stretched in the in-
put space, high-dimensional images can be arranged in a
2-D grid at different precision level in GHSOQM. Images
belong to neighboring neurons have similar semantic mean-
ings in an SOM of the same level. One of the advantages of

the proposed GHSOQM over TS-SOM is that the low-level
neurons of GHSOQM are generated adaptively whilst those
of TS-SOM are a priori predefined. Thus, dead or useless
neurons at each of the hierarchical level are removed. This
is significant because the storing space for neurons is saved
and searching time can be significantly reduced. Like TS-
SOM, the image retrieval time is reduced attributed to the
hierarchical tree structure. The most important contribution
of GHSOQM is that GHSOQM can incrementally learn new
incoming images without retraining all images. This is prac-
tically essential for dealing with very large image database.
Coupled with a relevance feedback technique, the proposed
CBIR system can achieve better retrieving results. Experi-
mental results demonstrate the effectiveness of the proposed
CBIR system.

The content of this paper is organized as follows. In Sec-
tion 2, CBIR system is briefly reviewed. In Section 3, SOM
and its variants are introduced. The new algorithm of GH-
SOQM is proposed. We present our proposed region-based
CBIR system using GHSOQM in Section 4. Experimen-
tal results are provided in Section 5. Finally, conclusion is
drawn in Section 6.

2. Previous work on CBIR

2.1. Features of images

The basic rule of a CBIR system is to extract features of
each image from its pixels and use them for comparing im-
ages. So the high-dimensional images are compressed and
represented by simpler and low-dimensional features. How-
ever, features of an image should have a strong relationship
with semantic meaning of the image. The feature extraction
is far from an image compression algorithm. The low-level
signatures should match the semantic high-level concepts
perceived by humans to understand images as much as pos-
sible.

A CBIR system tries to find relevant images from a query
images and sort the retrieved images. All those are done
according to a minimum distance or maximum similarity
measure in the feature space. How to extract features from
images, which features are to be used and how these features
are to be weighted leave rooms for different algorithms.
In general, the feature extractions in a CBIR system have
the following three types[16]: (1) histogram extraction; (2)
color layout extraction; (3) region-based extraction.

Region-based extraction is better than histogram or color
layout extraction for CBIR systems[16]. It first partitions
images into several regions, which may represent some se-
mantic objects in images. Then it extracts features from
segmented regions. Region-based extraction adaptively seg-
ments images according to each image while color lay-
out scheme does those without a priori knowledge of im-
ages. Some features other than colors, such as textures and
shapes, can be also included in region-based extraction.
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Region-based extraction can have a better retrieval result if
image segmentations are consistent with the objects in im-
ages. The performance of region-based extraction is robust
to image shifting, scaling, cropping, rotation[16].

2.2. Relevance feedback

The gap between the high-level semantic concepts by hu-
man and the low-level features by computers makes some
retrieved images by CBIR system irrelevant to query im-
ages. Motivated by the feedback in control theory, relevance
feedback (RF) is introduced to obtain better retrieval results
[21]. The basic idea of RF is to feed back the users’ judg-
ments of relevancy of retrieved images to query images and
modify query feature vectors through several iterative pro-
cedures. It is a supervised learning and users act as teachers
in RF systems. Usually after several iterations, the returned
images are better than those by one-shot retrieval.

Supposez is a feature vector of query image,X =
{x1, . . . , xn} is the set of returned relevantn images and
Y = {y1, . . . , ym} is the set of returned non-relevantm
images. The new query vector is modified by

z(t + 1)= �z(t)+ �

|X|
∑
xi∈X

xi − �

|Y |
∑
yi∈Y

yi , (1)

where |X| and |Y | are the number of elements inX and
Y sets, respectively, and�, � and � are weights for cur-
rent query image, relevant images and irrelevant images,
respectively.

2.3. Image distance measure

For histogram extractions, the distance between two im-
ages can simply be Euclidean distance. For region-based
extraction, different images may have different numbers of
segmented regions. Hence, the total numbers of features ex-
tracted from different images are different in spite of the
same number of features extracted from each region. There-
fore Euclidean distance cannot be applied directly for com-
paring region-based images. Comparing images with region-
based features does not have accepted methods now. One
method was developed by Smith and Li[3], where each im-
age is represented by a composite region template (CRT)
matrix and the distance of two images is measured by the
closeness of the two matrices. However, their method is not
robust to image shifting, scaling and rotation[16].

Integrated region matching (IRM)[16] is another method
to compare images with region-based features. It computes
weighted region-wise distances for the distance of two im-
ages. For example, there are two imagesX = {x1, . . . , xn}
andY = {y1, . . . , ym}, wherexi andyi are region feature
vectors for imageX andY, respectively. IRM first computes
the region-wise Euclidean distances between regions of im-
ageX andY and obtains an×m distance matrixD, where
the ij th element isDij = ‖xi − yj‖. Then IRM computes a

n×m weight matrixW that considers the region importance
between two images. Finally, IRM calculates the distance
Dis between the two images by just weighted sum ofD

Dis(X, Y )=
∑
i,j

wijDij , (2)

wherewij is the ith row and jth column element of the
matrix W and satisfieswij ∈ [0,1] and

∑
i,j wij = 1.

From Eq. (2), it can be seen that the distance measure
uses soft assignment since all pairs of the distances be-
tween the two regions of two images are considered and
weighted.

However, the computation of the weight matrixW in IRM
is quite complex and need considerable computation to pro-
cess it. If only the nearest region of imageY from a region
of imageX is considered, which is called hard assignment,
the computation of the matrixW can be avoided. In the
next section, the hard assignment is introduced in our pro-
posed new distance measure instead of the soft assignment
in IRM.

3. Related work on SOM and GHSOQM

3.1. Related work on SOM

Self-organizing map (SOM) consists ofM neurons located
on a regular low-dimensional grid (usually 1-D or 2-D).
The lattice of the 2-D grid is either hexagonal or rectangle.
The basic SOM algorithm is iterative. Each neuroni has a
d-dimensional feature vectorwi = [wi1, . . . , wid ]. At each
training stept, a sample data vectorx(t) is randomly chosen
from a training set. Distances betweenx(t) and all feature
vectors are computed. The winning neuron, denoted byc, is
the neuron with the feature vector closest tox(t)

c = arg min
i

‖x(t)− wi‖, i ∈ {1, . . . ,M}. (3)

A set of neighboring nodes of the winning node is de-
noted asNc, which decreases its neighboring radius of the
winning neuron with time. We definehic(t) as the neigh-
borhood kernel function around the winning neuronc at
time t. The neighborhood kernel function is a non-increasing
function of timet and of the distance of neuroni from the
winning neuronc in the 2-D output space. The kernel can
be taken as a Gaussian functionhic(t) = exp(−‖Posi −
Posc‖2/2�2(t)), i ∈ Nc, wherePosi is the coordinates of
neuron i on the output grid and�(t) is the kernel width.

The weight-updating rule in the sequential SOM algo-
rithm can be written as

wi(t+1)=
{
wi(t)+�(t)hic(t)(x(t)−wi(t)), ∀ i ∈ Nc
wi(t), otherwise

(4)

Both the learning rate�(t) and kernel width�(t) decrease
monotonically with time.
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The main drawback of SOM is that one must predefine the
map structure and the map size before the commencement
of the training process. SOM is inherently limited by the
fixed network structure. Usually, we must adopt trial tests to
select an appropriate network structure and size. The essen-
tial factor of eliciting these drawbacks is that we predefine
the data structure, which instead should be determined by
the data themselves. Several improved SOM algorithms and
SOM-related algorithms have been proposed in recent years
to overcome the predefined structure. The neural networks
in these algorithms dynamically increase their networks to
suitable sizes. These algorithms grow neurons either in in-
put space[22–25], or in both input space and output space
[26–28]. Some other algorithms grow SOM with quadtree
structure[29] were also proposed in[30,31].

Hierarchical SOMs are other variations of SOM. The
basic idea of hierarchical SOM is to use multiple SOMs
from top low-resolution to bottom high-resolution levels.
TS-SOM is the first tree-structured hierarchical SOM. Self-
organizing tree map (SOTM)[32] and self-organizing tree
algorithm (SOTA)[33] use hierarchical tree structures and
the training algorithms are like SOM. But the neurons in
each level for both algorithms are only one-dimensional.
Growing hierarchical SOM (GHSOM)[34] is a hierarchical
SOM. GHSOM can grow neurons horizontally at each level
or vertically for the whole tree structure. However, all these
variations of SOM are not capable of incremental learning
that can learn new data without retraining all data. We pro-
pose GHSOQM with the ability of incremental learning in
the next subsection.

3.2. GHSOQM

GHSOQM is a hierarchical growing SOM using a
quadtree structure. A neuron at higher level can generate its
child SOM at lower level according to the number of inputs
associated to it. This is like GHSOM where the network
grows hierarchically under some condition. But GHSOQM
does not grow neurons horizontally because we want to
simplify the growing process and train the network faster.
A neuron in GHSOQM may have four child neurons upon
some conditions.Fig. 1a shows the structure of GHSOQM,
which is very similar to the quadtree structure. Note that the
number of neurons at each level of GHSOQM is adaptively
determined while that of TS-SOM is predefined. And the
structure of GHSOQM can be considered as an incomplete
one of TS-SOM. If we look down from the top of hierarchy
of GHSOQM and only use the leaf neurons without child
SOMs, the final one-level map is like a one-level quadtree-
like SOM [30,31]as shown inFig. 1b corresponding toFig.
1a. In an SOM at each level of GHSOQM, neighboring
neurons have similar input data belonging to them. Usually
the root level with one neuron is useless and we begin with
the first level with four neurons.

The training data set is denoted asX = {x1, . . . , xn}.
The input data associated with neuroni at the nth

level are denoted byXn(i). The feature vectors of
the child neurons at the(n + 1)th level from the
mother neuroni at the nth level is denoted byWi

n+1 =
{Wi
n+1(1),W

i
n+1(2),W

i
n+1(3),W

i
n+1(4)}. Then the GH-

SOQM algorithm is summarized as follows:

1. INITIALIZATION:
Set leveln=1 and the feature vectors at the first
level W0

1 = {W0
1 (1),W

0
1 (2),W

0
1 (3),W

0
1 (4)},

whereW0
1 (i) is the feature vector of theith

neuron at level 1. An SOM with the four neu-
rons is trained with all dataX by invoking the
function TRAIN_SOM(X, n,W0

1 ).
2. RECURSIVE LOOP:

GENERATE_SOM(X, n,W0
1 ).

FUNCTION GENERATE_SOM(X, n,w)
FOR i = 1 to 4

Assign each input datum inX to its near-
est neurons. If the number of inputs assigned
with the ith neuron at thenth level is more
than a predefined number�, then the neuron
spawns four child neurons representing a child
SOM with size 2× 2. Then train the child
SOM by TRAIN_SOM(Xn(i),n + 1,Wi

n+1)

and generate child SOMs by recursively invok-
ing GENERATE_SOM(Xn(i),n + 1,Wi

n+1).
END

FUNCTION TRAIN_SOM(INPUT, n,W)
Train SOM at thenth level with the input data
INPUT and the four neurons with feature vec-
torsW.

In the above GHSOQM algorithm, the determination of
the value of� depends on the number of input data. The
more the number of input data, the larger the value of�
will be. Usually the value of� can be taken as 1–5% of the
number of input data for satisfactory performance.

The functionTRAIN_SOM is an implementation of the
original SOM algorithm. The functionGENERATE_SOM
recursively generates child SOMs if possible and train them
with data associated with their mother neurons. In a word,
GHSOQM trains SOMs at each level by the data associated
with their mother neurons. While the training of all SOMs at
all levels are completed simultaneously in the other hierar-
chical SOMs[32–34], GHSOQM completes the training of
SOMs at the upper levels and then proceeds to train SOMs
at the next lower level.
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Fig. 1. (a) Architecture of GHSOQM that grows neurons hierarchically when needed. (b) The one-level map corresponding to (a) when we
look down from the top of hierarchy of GHSOQM and only use the leaf neurons without child SOMs.

4. GHSOQM and relevance feedback in CBIR systems

4.1. Overall process of GHSOQM-based CBIR system

All images are processed by the same feature extraction
method. Each image is first segmented into several simi-

lar regions by the JSEG algorithm[35], which can provide
good segmentation results on a variety of images. The char-
acteristic features, i.e., colors and textures, are extracted for
each region of an image. After all available images are pro-
cessed, GHSOQM is trained by using region-based feature
vectors for images. After completion of training, all images
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Fig. 2. Architecture of GHSOQM-based CBIR system.

are first assigned to the SOM at the first level according to
the nearest distance. Then the images assigned to a neuron
at the first level are assigned to the child neurons of the neu-
ron. The assignment process proceeds until the leaf neurons
are assigned with images. After completion of image as-
signment to neurons, the GHSOQM-based CBIR system is
ready for query or retrieval. The image retrieval procedure
can be described as the following steps:

Step1: A submitted query image is processed to extract
region-based features.

Step2: The CBIR system first finds a nearest neuron at
the top level of GHSOQM.

Step3: If the number of associated images in the nearest
neuron exceeds a prespecified minimum number�, find a
nearest child neuron of the nearest neuron at the next bottom
level.

Step4: Repeat step 3 until the found neuron is associated
with the least number of images that is still more than the
prespecified number�. The last found neuron is a target one
for next steps.

Step5: Directly compare the distance between the query
image and the target neuron by region-based features. Sort
the images by distance with an ascending order and provide
them to users.

Step6: Users select some retrieved images by their se-
mantic meaning. This information is fed back to front-end
of the CBIR system. The old query is then modified to a new
one according to the users’ feedback. And the new query
is supposed to retrieve more relevant images. This step is
called relevance feedback (RF). RF is usually iterated for
several times.

In the above retrieve procedure, the determination of the
value of� depends also on the number of input data. The
more the number of input data, the larger the value of� will
be. Usually the value of� can be taken as 1% to 5% of the
number of input data for satisfactory performance.

The architecture of GHSOQM-based CBIR system is
shown in Fig. 2. Note that the proposed CBIR system
uses a hierarchical structure by GHSOQM to organize
images and GHSOQM must be first trained by using all
images. Retrieval processes in some CBIR systems, e.g.,
SIMPLIcity, directly compare query image with all images.
It uses a flat structure and does not require any training.

The extra work by GHSOQM is compensated by a faster
retrieval time.

4.2. Image segmentation, feature extraction and
region-based feature matrices

The image segmentation algorithm we used is the JSEG
algorithm. JSEG first quantizes colors in an image and gen-
erates a class map. Based on the class map, JSEG finds a
good segmentation with coarse or precise resolution by us-
ing a criterion for goodness of segmentation.

After image segmentation we can perform feature extrac-
tion for each region of an image. Thirteen features are ex-
tracted for each region, i.e., six for colors, six for textures
and one for region percentages of images. In this paper, the
Lab perceptually uniform color space is used, whereL rep-
resents the luminance of the color,a represents the position
between red and green,b represents the position between
yellow and blue. We compute the average and standard de-
viation of theL, a andb components in theLab color space
for each region of an image. We denote the average ofL, a
andb asf1, f2, andf3, the standard deviation ofL, a and
b asf4, f5, andf6. For texture features, we first compute
the following three variables for a 4× 4 block in an image
as used in Ref.[16]

a =

√√√√√

 2∑
i=1

2∑
j=1

a2
ij


/

4, b =

√√√√√

 2∑
i=1

2∑
j=1

b2
ij


/

4,

c =

√√√√√

 2∑
i=1

2∑
j=1

c2
ij


/

4, (5)

where

[
a11 a12
a21 a22

]
,

[
b11 b12
b21 b22

]
and

[
c11 c12
c21 c22

]
are the

coefficients of Haar wavelet transform forLH, HL andHH
band, respectively. After wavelet transformation, we just as-
sign the three variables to each pixel of the block. Then we
compute the average and standard deviation of the three fea-
turesa, b andc for each region. We denote the average of
a, b andc asf7, f8 andf9, the standard deviation ofa, b
andc asf10, f11 andf12. The last featuref13 is the region
percentage of an image.
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So an imagex can be denoted by region-based features
matrix[
Rx1
. . .

Rxn

]
,

whereRx
i

=[f x
i,1, . . . , f

x
i,12] (i= 1, . . . , n) is a row feature

vector representing theith region of the imagex, n is the
number of regions in the image. Different images may have
different number of regions. For the sake of convenience, a
neuron in the GHSOQM-based CBIR system is represented
by a feature matrix with a fixed number of rows, which
means a fixed number of regions.

4.3. Image distance

Since the representation of an image is a feature matrix,
we defined a distance measure in order to compare the dis-
similarity of two images. The IRM distance criterion com-
pares two images with mutual directions. And the algorithm
of weight assignment for regions in IRM is a little com-
plicated. In this study, images are compared with direction
from query image to other images. The weight assignment
for each region of an image is just the region percentage of
the image.

Suppose we have two imagesA and B. ImageA hasn
regions and imageB hasm ones. The corresponding repre-
senting matrix are[
RA1
. . .

RAn

]
and

[
RB1
. . .

RBm

]
,

whereRA
i

is the row feature vector of theith region of image
A and each component of all feature vectors are normalized
to lie in [0, 1]. The region distance betweenRAm andRBn is
defined as the following:

dmn =

w1

3∑
i=1

(f Am,i − f Bn,i )
2 + w2

6∑
i=4

(f Am,i − f Bn,i )
2

+ w3

9∑
i=7

(f Am,i − f Bn,i )
2

+w4

12∑
i=10

(f Am,i − f Bn,i )
2




1/2

, (6)

wherew1–w4 are the weights to colors and textures. In this
study, the weights are chosen such thatw1 =w3 =w4 = 1,
andw2 = 0.5. With this selection of weights for colors and
textures, image retrieval results are satisfactory.

The distance from imageA to B is described as the fol-
lowing steps.

Step1: Compute the distance matrixD, wheredmn is
the element inmth row andnth column of the matrix and
denoted by Eq. (6).

Step2: Find the minimum value in each row of the matrix
D and denoteDi as the minimum of theith row of D.

Step3: Compute the weighted average for distance from
imageA to B:

Distance(A,B)=
n∑
i=1

fAi,13Di. (7)

4.4. GHSOQM and relevance feedback in the proposed
CBIR system

The GHSOQM algorithm is used in the proposed CBIR
system. Images and weights of neurons are represented by
feature matrices. A large number of computations in GH-
SOQM is to find the nearest neurons to retrieve images. As
mentioned before, a neuroni represents an image at timet
by

wi =
[
Ri1(t)

. . .

Rir (t)

]
,

wherer is the fixed number of regions. The distance from
an imageA to neuroni (with weight matrixwi ) is the same
function as (7):

Distance(A,wi)=
n∑
i=1

fAi,13Di, (8)

whereDi is the minimum value in theith row of the distance
matrix D between imageA and neuroni.

The weight updating for neurons must be modified in the
proposed CBIR system because of the matrix representation
of images. The weight updating now is the following steps:

Step1: Find the nearest regions of an updating neuronk
from a query image

x =
[
Rx1
. . .

Rxn

]

at timet. The found regions of the neuron are arranged with
order in a matrix

[
Rk1(t)

′
..

Rkn(t)
′

]

corresponding to the regions ofx. Note that the found regions
may repeat such thatRk

i
(t)′ andRk

j
(t)′ are the same as a

region of the neuronk.
Step2: Like (4), update the neuron by

Rki (t + 1)′ = Rki (t)
′ + �(t)hkc(R

x
i − Rki (t)

′),
i = 1, . . . , n, (9)
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wherehkc is the neighborhood function,Rx
i

is the feature

vector of theith region of the query imagex, Rk
i
(t)′ is the

feature vector of the nearest region in neuronk at time t
from the ith region of the query imagex.

For example, a query imagex has three regions

[
Rx1
Rx2
Rx3

]

and an updating neuronk have four



Rk1
Rk2
Rk3
Rk4


 .

The corresponding nearest regions of the neuron from the
query image are


R

k
2
Rk3
Rk3




with order. The weight updating is

Rk2(t + 1)= Rk2(t)+ �(t)hkc(R
x
1 − Rk2(t)),

Rk3(t + 1)= Rk3(t)+ �(t)hkc(R
x
2 − Rk3(t)),

Rk3(t + 1)= Rk3(t)+ �(t)hkc(R
x
3 − Rk3(t)). (10)

Note that region 3 of the neuronk is updated twice because
it is the nearest region from regions 2 and 3 of the query
image.

RF of region-based feature matrices is like that of feature
vectors in Eq. (1). Assume the query image has a feature
matrix

x =
[
Rx1
. . .

Rxn

]
.

The retrieved images are classified as relevant imagesY =
{Y1, . . . , Y|Y |} and irrelevant imagesZ = {Z1, . . . , Z|Z|}.
For imageYi , find the nearest regions from the regions of
the imagex and denote them as a matrix

Y ′
i =

[
Y ′
i1
. . .

Y ′
in

]
,

where Y ′
ij

is the nearest region of imageYi from the
jth region of the query imagex. Similarly, the nearest
regions from the imagex are denoted as a matrix

Z′
i =

[
Z′
i1
. . .

Z′
in

]

for eachZi . Then the new query matrix is modified by

Rxi (t + 1)= �Rxi (t)+
�

|Y |
|Y |∑
k=1

Y ′
ki − �

|Z|
|Z|∑
k=1

Z′
ki ,

i = 1, . . . , n, (11)

where �, � and � are parameters controlling the relative
weighting of current query image, relevant images and ir-
relevant images, respectively.

4.5. Incremental learning of GHSOQM

For the new added images, the already learned neural
network must have the ability of learning new image without
reusing old images. The incremental learning of GHSOQM
implements this objective. The concrete steps of incremental
learning are described in the following:

Step1: Assign the new images to the neurons level by
level as the image assignment in GHSOQM.

Step 2: Check the leaf neurons if they can gener-
ate child neurons or not. If the number of data associ-
ated with a leaf neuron is more than the pre-specified
number �, the neuron has to generate four child neu-
rons. Train the weights of the four new neurons by
T RAIN_SOM(X, n,W) and generate child SOMs by
recursively callingGENERATE_SOM(X, n,W) if pos-
sible as described above, whereX are the data belonging to
the leaf neuron at leveln after new data are added,W is the
weights of the new four neurons at leveln+1 to be trained.

In a word, the basic principle of incremental learning
of GHSOQM is to assign the new images into the existed
network and grow new neurons hierarchically for the old
leaf neurons, with which the number of images associated
is more than the pre-specified number�.

5. Experimental results

In this section, 1000 images were firstly used to test the
effectiveness of the proposed CBIR system. Then 500 new
images were added to the system later without retraining all
images. Finally the robustness of the system was tested for
some alterations of sample images. Our testing system was
implemented on a Pentium III 733 MHz PC using MATLAB
software. The number of fixed regions for representing a
feature image of one neuron is set to 10. After image re-
trieval, users select relevant images by checking in the boxes
on the upper left corners of the relevant images. The next
new query by RF leaves out already checked images. And
all checked images are always listed on the top rank.

5.1. Performance of the GHSOQM-based CBIR system on
a static images data set

In this subsection, 1000 images[16] were evaluated to
test the proposed system. The images have ten classes, each
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Table 1
Ten classes of 1000 experimental images

Classes Semantic name
1 African people and village
2 Beach
3 Building
4 Buses
5 Dinosaurs
6 Elephants
7 Flowers
8 Horses
9 Mountains and glaciers

10 Food

of which contains 100 pictures. The sizes of the images
are 384× 256, or 256× 384. The ten classes are listed in
Table 1. The parameter� for GHSOQM training was set
to 20, which means that a neuron must generate its child
neurons if the number of images belonging to it is more
than 20. Another parameter� for the retrieval process was
set to 20, which means that the least number of a target
neuron for image retrieval is more than 20. Furthermore,
the implemented GHSOQM-based CBIR system only shows
the first 20 images to users. After completion of training
GHSOQM, the CBIR system was ready for testing.

First, the proposed CBIR system requires training for GH-
SOQM. By using MATLAB software, the average training
time by GHSOQM is 1890 seconds for the 1000 images
while the SIMPLIcity system does not require any training.
But GHSOQM-based query makes the querying time faster
than direct query without training. By using MATLAB soft-
ware, the average search time of GHSOQM-based query for
one image is 3.08 s and direct query is 7.25 s. The proposed
query is much faster than direct query because the hierar-
chical structure of images and the additional training before
querying.

Next we compare the recall-precision graph of the pro-
posed query and direct query. PrecisionP is defined as the
following:

P(k)= nk/k, (12)

where k is the number of retrieved images andnk is the
number of relevant images in the retrieved images. Recall
R is defined as

R(k)= nk/N, (13)

whereN is the number of all relevant images in the data set.
An optimal recall-precision graph would have a straight line,
i.e., precision always at 1. Typically, when recall increases,
precision decreases accordingly. Since the proposed system
only shows the first 20 images, the maximum value of recall
is 0.2 in this study. We used the aforesaid 10 sample images
from all classes and tested the performance of GHSOQM-
based query and direct query. The recall-precision graphs are
plotted inFig. 3, where GHSOQM-based query and direct

Fig. 3. Recall-precision graphs for GHSOQM-based query and
direct query on the 10 images (a) 097.jpg (African people and
village), (b) 173.jpg (beach), (c) 219.jpg (building), (d) 325.jpg
(buses), (e) 411.jpg (dinosaurs), (f) 586.jpg (elephants), (g) 672.jpg
(flowers), (h) 788.jpg (horses), (i) 861.jpg (mountains and glaciers),
(j) 906.jpg (food).
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Fig. 4. Retrieval results of image 325.jpg for GHSOQM-based query, corresponding toFig. 3.

query have similar query performance. The corresponding
retrieval result ofFig. 3d is shown inFig. 4. In Fig. 3, the
recall-precision graphs of some images are optimal at the
recall interval [0 0.2], i.e., buses, dinosaurs and flowers. This
is because the objects in these classes have simpler color
distributions. The performance for the images from other
classes is degraded because the objects in the images have
more complex color distributions. We also tested some other
images in each class and obtained similar results likeFig. 3.

Combined with RF, the proposed CBIR system obtained
more relevant images than that with one-pass query. The pa-
rameters of relevance feedback in this study are such that
� = 0.95, � = 0.05, � = 0.05 in (11). For RF, the improved
performance is evaluated by precision defined as the percent-
age of relevant image in the 20 retrieved images, i.e.,P(20)
in (12). We tested the proposed CBIR system on the previ-
ous sample images without optimal recall-precision graphs
in Fig. 3. The results with RF for GHSOQM-based query
and direct query are shown inFig. 5a–g. Almost all queries
on the sample images have been improved by RF. The av-
erage precision for GHSOQM-based query is increased by
about 0.18, while that for direct query is increased by about
0.15. The example image 788.jpg in horse class achieved
100% precision after 5 iterations of RF for both types of
queries as shown inFig. 5e.

GHSOQM organizes the images in a hierarchical level. At
top level, a large fraction of images of different classes are
mixed up into one neuron. A coarse resolution map is thus
formed. As with the level increased, the map becomes more

and more precise with a dominant class. The histograms of
images belonging to neurons at levels 1 and 2 are plotted in
Fig. 6, where no single classes are dominant for any neuron
at level 1. The histograms of images associated with the
child neurons at level 2 are depicted at the four corners in
Fig. 6. Some of the histograms have single dominant class.
For examples, the first neuron at level 2 at the upper right
corner, whose parent is the second neuron at level 1, has a
dominant class 5, which is mixed up with other classes in
the second neuron at level 1. As another example, the fourth
neuron at level 2 at bottom left corner, whose parent is the
third neuron at level 1, has a dominant class 4. It is the
single dominant class that makes the retrieved result with
high precision.

5.2. Dynamic performance of incremental learning of the
GHSOQM-based CBIR system with new images

In this case, 500 new images were added into the old
images. The sizes of the new images are 213× 160 or
160× 213. The added images can be roughly classified into
forest, mountain, flowers, sunset, blue sky, trees, grasses,
beach, snowed land, etc. Some classes are included in the
old images and some are quite new. We used the proposed
incremental learning of GHSOQM on the 500 new images
and GHSOQM on all 1500 images. By using MATLAB
software, the average training time of the first type of train-
ing is 1046 s while that of the second type is 2664 s. The
time saved is about 1618 s. The incremental property in the
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Fig. 5. Precision with iterations of relevance feedback between GHSOQM-based query and direct query for (a) 097.jpg, (b) 173.jpg,
(c) 219.jpg, (d) 586.jpg, (e) 788.jpg, (f) 861.jpg, (g) 906.jpg, (h) 500 new images (average).
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Fig. 6. Statistical results of images associated with neurons at levels 1 and 2.
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Fig. 7. Rank of the original image in the retrieved images for some image alterations on six sample images by GHSOQM-based query:
(a) brightness, (b) darkness, (c) sharpness, (d) more saturation, (e) less saturation, (f) random spread, (g) pixelization.
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Fig. 8. Retrieval results of altered images: (a) cropping (1542.jpg) from original image (739.jpg), (b) flipping (1598.jpg) from original
image (325.jpg), (c) horizontal shifting 2% (1644.jpg) from original image (586.jpg), (d) vertical shifting 2% (1696.jpg) from original image
(228.jpg).

proposed CBIR system is very important because retraining
with all data is not practicable and is wasteful.

We randomly selected 9 images from the new images
and tested the new incrementally learned CBIR system. The
average precision with iterations of relevance feedback is
shown in Fig. 5h. The average precision for GHSOQM-
based query is increased by about 0.15, while that for di-
rect query is increased by about 0.05. The GHSOQM-based

query has similar precision results with direct query. But it
needs less querying time.

5.3. Robustness of the GHSOQM-based CBIR system to
image alterations

The robustness of the GHSOQM-based CBIR system
is tested by altering some sample images, i.e., intensity
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variation, sharpness, blur, saturation, distortion, cropping,
shifting, rotating, etc. Six sample images from the first 1000
images were selected for such alterations. The robustness of
the proposed query is reflected by the rank of the original
image in the retrieved images. The higher the rank of the
retrieved original image, the more robust the altered images
will be. First we tested the seven types of alterations on the
six sample images from light to heavy degree. The ranks
of the retrieved original image with the variation of degree
are shown inFig. 7. Generally, the proposed system is ro-
bust to 10% brightening, 10% darkening, 10% sharpening,
30% more saturation, 30% less saturation, random spread
by 2 pixels, and pixelization by 1 pixel.Fig. 8 shows such
robustness to some sample images.

6. Conclusion

A framework of GHSOQM-based CBIR system was de-
veloped. The system has three advantages. First, the system
needs a neural network, called GHSOQM, to learn images
and thus organized images into a hierarchical structure. The
hierarchical maps are from coarse top level to precise bot-
tom level. Second, the query time is largely reduced due
to the tree structure of GHSOQM. This is very useful for
large image data sets today. Finally and most importantly,
the learning of GHSOQM can be incremental such that only
new images can be used for new training of GHSOQM if
new images are not included in the system.

In order to represent region-based images, we proposed
region-based feature matrices. We also proposed corre-
sponding GHSOQM updating rule for the feature matrices
of neurons. The mechanism of RF used in the proposed
system improves the performance of image retrieval. Exper-
imental results demonstrate the effectiveness and robustness
of our proposed system.
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