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Efficiently Searching the Important Input Variables
Using Bayesian Discriminant
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Abstract—This paper focuses on enhancing feature selection
(FS) performance on a classification data set. First, a novel FS
criterion using the concept of Bayesian discriminant is introduced.
The proposed criterion is able to measure the classification ability
of a feature set (or, a combination of the weighted features) in a
direct way. This guarantees excellent FS results. Second, FS is con-
ducted by optimizing the newly derived criterion in a continuous
space instead of by heuristically searching features in a discrete
feature space. Using this optimizing strategy, FS efficiency can
be significantly improved. In this study, the proposed supervised
FS scheme is compared with other related methods on different
classification problems in which the number of features ranges
from 33 to over 12,000. The presented results are very promising
and corroborate the contributions of this study.

Index Terms—A posteriori probability, Bayesian discriminant
(BD), feature selection (FS), Parzen window estimator.

I. INTRODUCTION

FEATURE selection (FS) is an essential preprocessing to
guarantee high accuracy, efficiency, and scalability of clas-

sification [1], especially when one is dealing with a huge data
set in the areas such as image processing and bioinformatics.
Generally, an FS scheme consists of two main parts—the cri-
terion for evaluating the “goodness” of features and the feature
searching engine to optimize certain evaluation criterion.

Obviously, the correct recognition rate of classifiers can
be directly employed as feature evaluation criteria. That is,
besides the purpose of classification, inference engines are
used for FS. This type of FS methods is categorized as the
wrapper or the embedded one [1], [2], [12], [32]. A wrapper
method [8], [32] trains certain classification model, and then
evaluates a tested feature subset according to the performance
of the trained model on the validation data. In an embedded
model [3]–[6], [31], the parameter information of a trained or
training classifier is used to evaluate the contribution of fea-
tures. Generally, both the wrapper and the embedded methods
can guarantee high classification accuracy, but they are usually
computationally demanding [7]–[9]. These methods may also
suffer from the problem of overfitting [7], [8]. Alternatively,
many filter methods are developed in such a way that the FS
process is independent of a classification learning procedure.
In the filter methods, various criteria instead of classification
error have been developed to measure the feature relevance,
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i.e., the relationship between features and class labels, and/or
the feature dependence, i.e., the relationship among features. In
[10], [11], the correlation or coefficient, the second-order sta-
tistics between two variables, was used to measure the feature
relevance and/or the feature dependence. In [2], the concept of
consistency was used to identify the salient features, behind
which the rationale is that the data patterns close to each other
are expected to have the same class label, and in [13]–[17],
mutual information (MI) and probabilistic divergence were
used for the purpose of FS. In [18], clustering information was
exploited to find the appropriate features for classification. The
studies on FS have been surveyed in many literatures [2], [19],
[20]. It can be noted that most of the currently developed FS
criteria of the filter models do not directly reflect the classifi-
cation decision rule. Given that the major objective of FS is
to raise the classification performance, it is desirable that the
classification decision rule directly appears in the process of
determining the useful features. This is the main motivation for
proposing a new FS criterion in this paper. In order to reduce
the misclassification risk, the classification decision rule is to
assign a pattern (say, ) to the class having the maximum a
posteriori probability, . In Bayesian decision theory, the
Bayesian discriminant (BD) [21] can not only reflect this classi-
fication rule, but also can evaluate how likely that the decision,
which is made according to this rule, is correct. Thus, in this
paper, the concept of BD is explored as the core of the feature
criterion. In this sense, the criterion is called BDFS for short.
In BDFS, the a posteriori probabilities are firstly estimated
by using Parzen window [22] and the Bayesian formula [21].
Then, the classification abilities of the features are evaluated by
using these probability estimates.

Until now, heuristic strategies, such as backward and forward
searching, are commonly used for searching features because
they can be implemented in a relatively simple way. Also,
the complexity of heuristic searching is , where is
the number of the given features. These heuristic strategies
are clearly more computationally efficient compared with the
exhaustive searching. However, with the increasing of , the
computational burden of these searching strategies becomes so
heavy that it makes the application of these strategies difficult.
Thus, researchers have been trying to make use of optimization
strategies in the continuous space to conduct FS [18], [23],
[24]. In this type of feature searching scheme, the weights of
a FS criterion reflect the contributions of all the features. Ac-
cording to the optimization result of that selection criterion, the
classification abilities of all the features can be evaluated simul-
taneously. Hitherto, many developed optimization approaches
in the continuous space have been used for FS. For example,
in [23], the similarity-based criterion was optimized through
applying Lagrange multipliers. In [18], a type of least-square
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approach was used to optimize a clustering-information-based
FS criterion. These continuous-space searching strategies are
generally highly efficient especially when one is handling a
large feature set. Thus, a searching strategy of this type is con-
sidered in our study. We developed a gradient-based algorithm
to maximize BDFS. The experimental results will show that this
algorithm is able to solve a FS problem with great efficiency.

To sum up, the main advantages of our study are listed as
follows.

1) The classification ability is directly evaluated according
to the generic data analysis. This guarantees excellent FS
results compared with other methods.

2) The feature searching is carried out through optimizing
the FS criterion in a continuous space.

The proposed algorithm can be implemented in a very simple
way and exhibits high convergence rate. More importantly, the
huge computational reduction of the proposed algorithm does
not sacrifice the effectiveness of FS. In order to evaluate the
proposed FS scheme, an extensive comparative work with other
related schemes in terms of effectiveness and efficiency are pre-
sented. These schemes include pulsewidth MI (PWMI) [14],
MI-raw-FS [15], quadratic MI FS (QMIFS) [16], the
FS scheme ( -FS) [18] and a support vector machines
(SVM) based FS scheme, SVM recursive feature elimination
(SVM RFE) in [3]. The comparative results can clearly show
the merits of the proposed scheme.

This paper is organized as follows. Section II gives the back-
ground of our study, including the Bayesian decision theory and
Parzen window probability estimator. Then, the proposed FS
criterion and the approach for optimizing this criterion are de-
tailed in Section III and Section IV, respectively. After that, the
study results are presented and discussed in Section V. Finally,
the conclusions are drawn.

II. BACKGROUND

A. Bayesian Decision Theory

The Bayesian decision theory [21] is a versatile statistical
method for performing pattern classification. Suppose that we
have a general classification problem having objects. and

denote a data pattern and the classification
label of that pattern, respectively. This is a -class classifica-
tion problem, i.e., , .

Based on the decision rule of the Bayesian theory, is as-
signed to class , where . rep-

resents the classifier model for delivering a posteriori probabili-
ties . The risk of making the above decision can be mea-
sured by using BD. In the case of a two-class problem ,
the BD of is defined as

(1)
For a multiclass problem , BD is defined in different
ways [25], [26]. For the sake of convenience, we define the BD
as

(2)

which can be used to solve either two-class or multiclass
problem.

In a classification training process, the task is to increase the
BD (1) or (2) as much as possible through modifying classifier

. Being the preprocess of a classification, FS naturally aims to
maximize the BD through searching different combinations of
features.

B. Parzen Window Estimator

The Parzen window is a popular type of probability estimator
[22]. Before explaining the Parzen window, we denote as the
pattern size of class . It is obvious that

. We rewrite the -group classification data mentioned in
the previous section as

Using this data set, the a priori probabilities can be evaluated by

(3)

(4)

where is the kernel function of the Parzen window. The con-
ditional probability is

(5)

Using the Bayesian formula [21], we have

(6)

In this paper, a symmetric Gaussian function is chosen as the
kernel function .1 The general form of the -dimensional
Gaussian function is

(7)

where is determined from distribution of a given data. As
the given data is preprocessed to have a unit variance and a zero
mean in each coordinate, we set with a scalar. For a data
point , is set to the half of the mean square Euclidean

1Using the Gaussian function as the kernel of the Parzen window probability
estimator also has its limitation—the estimation accuracy may be (greatly) re-
duced when a given problem has nonconvex classes, although Parzen window
estimator theoretically can approximate the real underlying probability as much
as possible. We are grateful to the anonymous referee who pointed this out to
us.
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distances between and all the data point to , i.e.,
, where

.

III. BAYESIAN DISCRIMANT FEATURE SELECTION CRITERION

A. Definition of BDFS

Based on (2), the BDFS criterion of a feature set is defined
as

(8)

where is the probability of the pattern be-
longing to the class , and is the probability of
the pattern not belonging to the class . Intuitively, BDFS
measures how likely the patterns in can be correctly classi-
fied when the feature subset is used. A large value of BDFS
indicates the high classification ability of . Negative values of
BDFS mean that the classes of most patterns cannot be cor-
rectly recognized with the feature subset .

For , the whole data set can be partitioned into two com-
plementary groups— including all the patterns having the
same class label with and consisting of all the patterns
but ones in , i.e., . Based on the probability
estimate (6), we have

(9)

The physical meaning of BDFS is evident. It is known that
enumerates the similarity of to , or the

“drawing force” of to . Thus, part A of (9) measures the
“drawing force” to from the interclass samples, whereas part
B of (9) measures the outer class “drawing force” to . BDFS
of evaluates the extent that the interclass “drawing force” to

is larger than the intraclass one.

B. Comparison Between the MI Based Criteria and BDFS

The MI-based feature evaluation criteria have been described
in literatures [13]–[16]. To estimate an MI-based criterion, the
knowledge on the underlying conditional probability ( and

) are required. In [14]–[16], the Parzen window condi-
tional probability estimators (3)–(5) are employed for this pur-
pose. These MI-based criteria are similar to the proposed BDFS.
Thus, we compared BDFS with these MI based criteria in this
section.

Based on the commonly used definition of mutual informa-
tion

PWMI (10) and MI-raw (11) were proposed in [14] and [15],
respectively.

(10)

(11)

Most recently, Chow and Huang [16] employed the QMI (3.5)
to effectively measure the relevancy of features.

(12)

It is noted that PWMI (10) measures the class information
distribution around each data sample. For a sample, when
the class information around it is distributed along one class
direction, PWMI achieves the maximum. When the class infor-
mation around is distributed equally in all class directions,
PWMI achieves the minimum. QMI (12), a modified Euclidean
distance of two probabilities, measures the difference between
probabilities and [17]. All these ideas are
useful for evaluating the classification ability of feature subset.
PWMI and QMI, however, do not directly reflect the classifica-
tion rule. As for MI-raw (11), it can be rewritten as

(13)

The second part of (13), the entropy of the class, is a constant
for any feature subset. It, thus, has no effect on the result of
FS. The first part is the determinant part of MI-raw, and thus is
called MI-raw1 below. MI-raw1 is similar with BDFS in a sense
of format, and was particularly compared with BDFS. As shown
in Fig. 1, MI-raw1 clearly biases the patterns with .
With the decreasing of , the absolute value of MI-raw1
increases rapidly. As a result, the patterns with a small
may have a determinant effect on MI-raw1. We know that noise
samples always have a very small . Thus, a small fraction
of noise samples may greatly reduce the value of MI-raw1 of
an important feature. In that scenario, MI-raw1 (i.e., MI-raw)
may not be able to differentiate an important feature from the
irrelevant ones. On the other hand, the proposed BDFS does not
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Fig. 1. Comparison between BDFS and MI-raw1- the first part of MI-raw (13).

suffer from this sort of problem because it balances the effects
of the patterns with and ones with

. With this characteristic, BDFS is more robust than MI-raw.
Below, we present synthetic examples to further elaborate this
discussion.

A 10-dimension synthetic data set was firstly gener-
ated. The 100 data points in this data set evenly fall into two
classes (i.e., or 1). Among the 10 features, only
and are relevant. For the first 50 points, was drawn from

and was drawn from , while, for the other
50 points, and were drawn from and re-
spectively. As for the other eight features, all of them are irrel-
evant, and are randomly sampled from . Under the for-
ward searching scheme [13], [17], [19], BDFS and the MI based
criteria, i.e., PWMI, MI-raw and QMI, are used to identify the
two salient features. The correct selection order is or

. In each case, all the criteria were tested with 100 in-
dependently generated data sets. The presented results are the
statistical results of 100 different trials.

We first tested different values of in a range of [1.5, 3]. Ob-
viously, with the decreasing of , the overlapping between the
two classes becomes larger, i.e., the number of noises increases.
The selection accuracy rates are listed in Table I(a). In the case
of the relative large overlapping, BDFS and QMI outperformed
the other criteria. In a practical application, it is possible that
the patterns are unintentionally mislabeled. To simulate this sce-
nario, we set , then randomly selected certain points and
changed the class labels of these points. Different numbers with
“mislabeled” noises were tested. The correctness rates of 100
trials are listed in Table I(b). Obviously, these results show that
BDFS and QMI are better than PWMI and MI-raw. In these
simple cases the merits of BDFS have been shown. In Section V,
more comparative results will be presented.

IV. EFFICIENT ALGORITHM FOR OPTIMIZING BDFS

In order to evaluate all the M features simultaneously, the
M-elements vector is introduced to
modify BDFS, which satisfies

and (14)

TABLE I
COMPARISON OF DIFFERENT FS CRITERIA ON SYNTHETIC DATA SET. VALUES

LISTED IN THIS TABLE ARE CORRECTNESS RATE OF 100 TRIALS. (a) RESULTS

WITH DIFFERENT � . (b) RESULTS WITH DIFFERENT SIZE OF NOISES

The modified Gaussian function (7) and BDFS (8) are

(15)

(16)

In (16), the value of reflects the importance of the feature
to BDFS. Assume that is the weight set that maximizes

BDFS (16) under the constraint (15). A large element of
indicates that the corresponding feature poses much effect on
delivering a better classification result.

The gradient of BDFS (16) in terms of is

(17)

where
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And our simple gradient based algorithm to fulfil the constraint
optimization of BDFS can be stated as following.

Step 1) Set the values of randomly,
satisfying and .

Step 2) Calculate , ,
using (4.4).

Step 3) For any , set .
Step 4) Obtain the new weight values through normalizing

, i.e., .
Step 5) Calculate the difference between and ,

i.e., .
Step 6) If is small than 0.001 then go to Step 7

Else, for , then goto step
2. End If.

Step 7) Output .

The computational complexity of this process is ,
where and are the number of features and the number
of cycle, respectively. Generally, this process stops within 10
cycles, which will be shown in the results of the next section.
Thus, the proposed FS scheme is very efficient even when is
a large value.

V. RESULTS AND DISCUSSION

In this section, BDFS-G represents the FS technique based
on BDFS and the gradient based algorithm described in Sec-
tion IV. We compared BDFS-G with other related techniques,
such as, PWMI [14], MI-raw-FS [15], QMIFS [16], -FS
[18] and SVM-RFE [3]. As mentioned before, the first three
models make use of Parzen window probability estimator, just
like BDFS-G does. And similar to BDFS-G, -FS employs
the optimization approaches in the continuous space to weigh all
the given features. SVM-RFE is a typical and efficient embed-
ding FS model. Besides these methods, the BDFS based forward
FS scheme (BDFS-F) was also implemented and compared with
BDFS-G. Through these comparisons, the effectiveness and the
efficiency of BDFS-G are extensively evaluated.

In a real classification example, in which no a priori knowl-
edge is available, we evaluated the FS results by using the
classification accuracy on the test data. Among several feature
subsets of the same size, the one that delivers the highest
classification accuracy is considered the best. Five classifiers
were employed for this purpose. They are a neural network
(NN) classifier, two SVM models, a decision tree (DT) and
an -NN rule. NN, DT and -NN are available in Weka soft-
ware (available at http://www.cs.waikato.ac.nz/~ml/weka),
in which the parameters were set to the default values
throughout our investigation. The employed SVM models
are the SVM with “Linear” kernel (SVM-L) and the SVM
with “RBF” kernel (SVM-R). These SVM models are available
at http://www.isis.ecs.soton.ac.uk/resources/svminfo. All our
studies were conducted by using Matlab 6.1 on Sun Ultra En-
terprise 10 000 workstation having 100-MHz clock frequency
and 4-GB memory.

Also, as the initialization may have an effect on the results
of -FS and BDFS-G, these schemes were tested with ten
different trials in each example. The statistical results of the ten
trials, i.e., the mean and the variance, are presented in this paper.

Fig. 2. Change trend of Di� in BDFS-G on the UCI classification data sets.

A. UCI Benchmarks

The FS methodologies were applied to the benchmarks
of UCI data repository (available at http://www.ics.uci.edu/
~mlearn/MLRepository.html). In these applications, all the
forward FS schemes (including PWMI, QMIFS, MI-raw-FS,
and BDFS-F) stopped when half of the original features had
been selected.

Sonar Classification Data: This dataset was constructed to
distinguish sonar returns bounced off a metal cylinder from
those bounced off a rock. It consists of 104 training patterns
and 104 testing patterns. It has 60 input features and two output
classes, metal/rock.

Ionosphere Classification Data: In this binary classification
task, the “bad” radar is to be detected on the basis of the col-
lected data. This data have the 351 samples, each of which con-
sists of 34 features. We randomly separated the whole data into
two groups—200 for training and 151 for testing.

In these examples, BDFS-G exhibited very efficient perfor-
mance because BDFS-G only required approximately 10 cycles
to meet the stopping criterion, as shown in Fig. 2. In Fig. 3,
the efficiency comparisons of different methods are illustrated.
These comparative results indicate that BDFS-G and -FS
are much efficient than the others. This is primarily because both
BDFS-G and -FS employ the optimization approaches in
the continuous space to conduct feature searching. Also, it is
worth noting that, with the increasing of the number of sample,
the computational complexity of SVM-RFE increases signifi-
cantly faster than those of other methodologies.

In Tables II and III, different methodologies are compared in
terms of FS effectiveness. It is firstly noted that, attributed to the
advantages of BDFS, BDFS-G and BDFS-F can obtain better re-
sults than the others. BDFS-G consistently delivers much better
performance compared with another efficient scheme such as

-FS. Also, the FS results of BDFS-G are comparable to or
even better than those of BDFS-F. Thus, it can be concluded that,
using the proposed gradient based feature searching strategy, the
extent of the efficiency raised has no adverse effect on the effec-
tiveness of FS. In Table IV, the results on other UCI datasets are
briefed. These results similarly suggest that high performance
can be delivered by the proposed BDFS-G. The comparative re-
sult between BDFS-G and BDFS-F show that BDFS-G has no
particular advantage in terms of efficiency when the number of
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Fig. 3. Comparison of running time on UCI classification data sets. (a) Sonar
data set. (b) Ionosphere data set.

TABLE II
COMPARISON OF SONAR CLASSIFICATION DATA SET. BEST RESULTS IN EACH

CASE ARE HIGHLIGHTED IN BOLD FACE

the selected features is less than 10. And the efficiency advan-
tage of BDFS-G becomes significant with the increasing of the
number of selected features. Generally, in real applications, it

TABLE III
COMPARISON OF IONOSPHERE DATA SET. BEST RESULTS IN EACH

CASE ARE HIGHLIGHTED IN BOLD FACE

TABLE IV
COMPARISON OF OTHER UCI DATA SETS. (a) SUMMARY OF DATA SETS. (b)

COMPARATIVE RESULTS. IN EACH COLUMN, UPPER VALUE IS CLASSIFICATION

ACCURACY OF k-NN, AND LOW VALUE IS RUNNING TIME IN SECOND

is required to select over 10 features. In that case, BDFS-G ap-
peared to be the best option in terms of its effectiveness and
efficiency.

We also evaluated the effect of initialization on the perfor-
mance of BDFS-G. In practice, the close-zero standard devia-
tions listed in Table II and Table III indicate that initialization
has insignificant effect on the performance of BDFS-G. Fur-
ther, for each feature, we compared the ordering results of 10
trails. In Table V, it summarizes the largest ordering difference
and the top ranking of the feature(s) having this ordering dif-
ference in each example. For instance, in a sonar application,
the largest ordering difference, i.e., 6, occurred in feature 60.
The lowest rank of that feature is 31, and the highest one is 25.
Based on the results presented in Table V, it can be concluded
that the initialization has unnoticeable effect on the ordering re-
sults. Also, the less prominent features (i.e., those with relative
lower ranking) are more likely to have a relatively large ranking
change. Based on the above discussions, we can assert that the
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TABLE V
SUMMARY OF BDFS-G ON UCI BENCHMARKS. FOR EACH EXAMPLE, RESULTS

OF 10 TRIALS ARE COMPARED TO EACH OTHER. THESE COMPARATIVE

RESULTS ARE USED TO VERIFY STABILITY OF BDFS-G

results of BDFS-G are basically independent of initializations.
This is very preferable for a gradient-based learning process.

B. Cancer Classification Using Microarray Gene Expression

In this study, the compared methods were applied to four
different cancer classification microarray gene expression data.
The forward FS schemes stopped after 100 features (genes)
had been identified. SVM-RFE cannot deal with acute lym-
phoblastic leukemia (ALL) subtype classification data because
this data includes more than twoclasses. The memory require-
ment makes it extremely difficult for -FS to handle the
data sets with over 10 000 features. Thus, -FS was not
applied to the examples of prostate cancer classification and
ALL subtype classification.

Colon Tumor Classification: These data contain 62 samples
collected from colon-cancer patients [27]. Among these sam-
ples, 40 samples are tumor, and 22 are labeled “normal.” There
are 2,000 genes selected based on the confidence in the mea-
sured expression levels. The whole sample set was randomly
split into two disjoint parts—30 samples for the training and 32
for testing.

ALL-AML Classification: This classification task is aimed to
distinguish the two variants of leukemia, namely, ALL and acute
myelod leukemia (AML) [28]. The given training and test data
sets consist of 38 and 34 samples, respectively. The expression
levels of the 7129 genes are given in each sample.

Prostate Cancer Classification: The objective of this
classification is to distinguish prostate cancer cases from non-
cancer cases [29]. This data set is available on http://www-
genome.wi.mit.edu/mpr/prostate. There are 136 data samples,
and each sample contains 12 600 features. We randomly par-
titioned the whole data set into two subsets. One 76 patterns
was used for training, and the other 60 patterns were used for
testing.

Subtype of ALL Classification Data Set: The task of this ap-
plication is to correctly diagnosis the subtypes of the pediatric
ALL [30], which is crucial because different subtypes have dif-
ferent treatment plan. The original data has been divided into six
diagnostic groups (BCR-ABL, E2A-PBX1, Hyperdiploid>50,
MLL, T-ALL and TEL-AML1), and a miscellaneous class that
contains diagnostic samples that did not fit into any one of the
above groups (thus labeled as “Others”). There are a total of
12 558 features and 327 samples in this dataset. This dataset has
been partitioned into two disjoint subsets, of which 215 samples
were used for training and 112 were used for testing.

The typical trends of BDFS-G in these applications are
illustrated in Fig. 4. And the comparisons on running time are

Fig. 4. Change of Di� in BDFS-G on the four microarray based cancer
classification data sets.

Fig. 5. Comparison of running time on microarray based cancer classification
data sets. (a) Prostate; (b) Subtype of ALL.

presented in Fig. 5. All these results show that the proposed
BDFS-G exhibits the quite fast convergence rate. For example,
in the prostate cancer classification data, BDFS-G required 276
s to rank all the 12 000 features, while it took approximately
8245 s for BDFS-F to determine the top 100 important features,
as presented in Fig. 5(a). In the ALL subtype classification ex-
ample, the results illustrated in Fig. 5(b) show that the compu-
tational complexity of BDFS-F is more than 40 times of that of
BDFS-G. Apparently, the high efficiency of BDFS-G is an ap-
pealing advantage when a huge feature set is given.



792 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 52, NO. 4, APRIL 2005

TABLE VI
COMPARISON OF COLON CANCER CLASSIFICATION DATA SET. BEST RESULT IN

EACH CASE IS HIGHLIGHTED IN BOLD FACE

TABLE VII
COMPARISON OF ALL-AML CLASSIFICATION DATA SET. BEST RESULT IN

EACH CASE IS HIGHLIGHTED IN BOLD FACE

TABLE VIII
COMPARISON OF PROSTATE CANCER CLASSIFICATION DATA SET. BEST RESULT

IN EACH CASE IS HIGHLIGHTED IN BOLD FACE

TABLE IX
COMPARISON OF SUBTYPES OF ALL CLASSIFICATION DATA SET. BEST RESULT

IN EACH CASE IS HIGHLIGHTED IN BOLD FACE

TABLE X
SUMMARY OF BDFS-G RESULTS ON FOUR CANCER CLASSIFICATION DATA

SETS. ONLY THE FIRST 50 FEATURE SUBSETS DETERMINED BY BDFS-G
ARE CONSIDERED DURING SUMMARIZING

As for evaluating the effectiveness of these methods, compar-
ative results are presented in Tables VI–IX. Also, the best clas-
sification results are summarized in Table X. Based on these re-
sults, we can draw similar conclusions with the cases of the UCI
data. Firstly, in terms of FS effectiveness, both BDFS-G and
BDFS-F outperformed other methods in most scenarios. Sec-
ondly, zero standard deviations of BDFS-G listed in all these ta-
bles indicate the stable performance of BDFS-G. Thus, we can
assert that the BDFS-G is able to consistently deliver excellent
results irrespective of the size of the data set.

VI. CONCLUSION

In this paper, a new type of filter model for performing FS
is presented. Two important issues are addressed in an effort to
enhance the FS performance. First, a new FS criterion is intro-
duced. By using the concept of BD, this criterion can evaluate
the classification ability of a feature subset in a straightforward
way. This makes the proposed criterion very effective com-
pared with other FS criteria. Second, we use a gradient based
searching scheme to tackle the FS problem. This searching
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scheme is remarkably efficient even when it is used to handle
a huge feature set. More importantly, the convergence of this
gradient-based process is very robust to initialization. In this
study, extensive examples are used to evaluate the proposed
criterion and the searching scheme. The presented results
clearly show the advantages of the proposed method.
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