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A health index, Mahalanobis distance (MD), is proposed to indicate the health condition of cooling fan
and induction motor based on vibration signal. Anomaly detection and fault classification are accom-
plished by comparing MDs, which are calculated based on the feature data set extracted from the vibra-
tion signals under normal and abnormal conditions. Since MD is a non-negative and non-Gaussian
distributed variable, Box–Cox transformation is used to convert the MDs into normal distributed vari-
ables, such that the properties of normal distribution can be employed to determine the ranges of
MDs corresponding to different health conditions. Experimental data of cooling fan and induction motor
are used to validate the proposed approach. The results show that the early stage failure of cooling fan
caused by bearing generalized-roughness faults can be detected successfully, and the different unbal-
anced electrical faults of induction motor can be classified with a higher accuracy by Mahalanobis–Tagu-
chi system. Such works could aid in the reliable operation of the machines, the reduction of the
unexpected failures, and the improvement of the maintenance plan.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Rotary-machines (such as cooling fans and induction motors)
play an important role in modern society. Cooling fans are widely
used for thermal management in electronic products. Schroeder
and Gibson (2007) reported that cooling fan was one of the top
10 failing components in electronic products. Induction motors,
which convert electrical energy into mechanical energy, are the
critical component in industrial equipment. Failure of induction
motors can lead to their host system breakdowns, loss of produc-
tion and income, and even casualties (Chow & Hai, 2004; Li, Chow,
Tipsuwan, & Hung, 2000; Motor Reliability Working Group, 1985;
Thorsen & Dalva, 1999). Therefore, fault diagnosis in these two ro-
tary-machines is important, and plays a key role for the reliable
operation of them and their host system, reducing the unexpected
failures, and improving the maintenance.

Research on fault diagnosis of rotary-machines has gained
increasing interests world-wide, and is still a hot topic today, as
evidenced by Prognostics and System Health Management confer-
ences over recent years. Several types of signals are used for this
purpose. For examples, acoustic emission signals are analyzed to
estimate the degree of cooling fan bearing degradation (Oh,
Azarian, & Pecht, 2011); sound pressure level could differentiate
a new and failed cooling fan effectively (Oh, Shibutani, & Pecht,
2012); motor current signals are used to monitor the health
condition of induction motor (Niu et al., 2008); and oil-based ap-
proaches are used to predict the residual life of plant (Wang,
2009). Although there are many other methods developed for
fault diagnosis of rotary machines based on different signals,
vibration signal analysis is the most common, effective, and reli-
able method (Caesarendra, Niu, & Yang, 2010; Chow & Hai, 2004;
Gan, Zhao, & Chow, 2009; Randall & Antoni, 2011; Wang, Tse,
Guo, & Miao, 2011). Based on vibration signals, the signal pro-
cessing approaches such as time domain analysis (Heng & Nor,
1998; Martin & Honarvar, 1995), frequency domain analysis
(Courrech, 2000; Miao, Cong, & Pecht, 2011; Miao, Azarian, &
Pecht, 2011), and time–frequency domain analysis (Tse, Peng, &
Yam, 2001; Wang, Zi, & He, 2009), are used for fault diagnosis.
In this study, vibration signals from cooling fan and induction
motor are also measured and analyzed. Features sets that can re-
veal the characteristics of time domain and frequency domain of
vibration signals are constructed. A health index, Mahalanobis
distance (MD), is used and enhanced by Mahalanobis–Taguchi
system (MTS) for anomaly detection and fault classification. Then,
anomaly detection and fault classification are done by comparing
MDs of normal and abnormal conditions.
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MTS combines the MD and Taguchi methods to deal with mul-
tivariate problems. It has been successfully applied into different
areas, such as damage detection in civil engineering, bankruptcy
and financial crisis prediction, and health condition checking (Che-
ung et al., 2008; Cho, Hong, & Ha, 2010; Lee & Teng, 2009; Taguchi
& Jugulum, 2002; Wang, Su, Chen, & Chen, 2011; Yang & Cheng,
2010). Recently, MTS and MD are introduced into fault diagnosis
and prognosis of rotary-machines in the following papers: Soylem-
ezoglue, Jagannathan, and Saygin (2011) presented an MTS-based
fault diagnosis and prognosis scheme for centrifugal pump
failures; Wang, Wang, Tao, and Ma (2012) used MTS to diagnose
bearing single-point faults. Jin, Ma, Cheng, and Pecht (2012) pre-
sented a health monitoring scheme based on MD with minimum
redundancy maximum relevance feature selection. To our best
knowledge, it is the first time to use MTS for anomaly detection
of cooling fans due to bearings generalized-roughness faults, and
fault classification of the unbalanced electrical faults of induction
motor.

The main contributions of this paper can be summarized as
below: (1) A health index, MD, is proposed to indicate the health
condition of cooling fan and induction motor; (2) MTS is employed
to make the proposed health index robust; (3) The effectiveness of
the proposed health index is validated by two experimental data
sets. Results show that early stage of failure of cooling fan caused
by bearing generalized-roughness faults can be detected success-
fully, and different unbalanced electrical faults of induction motor
can be classified at a higher accuracy by using MTS.

The rest of this paper is organized as follows. In Section 2, MTS
is briefly reviewed, and the way of determination of the ranges of
MDs corresponding to different health conditions are introduced.
The proposed anomaly detection and fault classification approach
is introduced in Section 3. Anomaly detection of cooling fan is re-
ported in Section 4, while fault classification of induction motor
is presented in Section 5. Finally, the conclusions are drawn in
Section 6.

2. Mahalanobis–Taguchi system

MTS is a pattern recognition technology that is widely used
for data classification (Taguchi & Jugulum, 2002). It combines
the MD and Taguchi methods together. MD is a generalized dis-
tance that is useful for determining the similarities between un-
known and known sample data sets. It uses a scalar value to
represent a multivariate system. Taguchi methods are statistical
methods used to improve engineered quality (Taguchi & Jugulum,
2002) and make the system more robust (Taguchi, Chowdhury, &
Wu, 2001).

2.1. Four steps in MTS

Generally, there are four steps in a MTS, as shown in Fig. 1
(Taguchi & Jugulum, 2002).

Step I: Mahalanobis space (MS) construction

Feature data from the healthy products are collected to form the
normal data set, and their MDs constitute a reference space that is
also known as the MS. Their MDs are around one. In this study, fea-
ture data set constructed from the vibration signal from normal ro-
tary machines is used to form the MS.

The normal data set is denoted as P; pij is the ith observation on
jth feature, where i = 1, 2, . . ., m, and j = 1, 2, . . ., n. Pj and Sj are the
mean and the standard deviation, respectively, of the jth feature
(Pj), where j = 1, 2, . . ., n. Each individual feature in each data vector
(Pj) is normalized by the mean (Pj) and the standard deviation (Sj).
Thus, the normalized values are as follows:
zij ¼
pij � Pj

Sj
; i ¼ 1;2; . . . ;m; j ¼ 1;2; . . . ;n ð1Þ

where

Pj ¼
1
m

Xm

i¼1

pij ð2Þ

Sj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
i¼1ðpij � PjÞ2

m� 1

s
ð3Þ

The MDs of the normal dataset are calculated using the follow-
ing equation:

MDi ¼
1
n

ziC
�1zT

i ð4Þ

where zi = [zi1, zi2, . . ., zin], zT
i is the transpose vector of zi, and C�1 is

the inverse of the covariance coefficient matrix C. C is calculated as:

C ¼ 1
m� 1

Xm

i¼1

zT
i zi ð5Þ

One issue faced by MD is multicollinearity (strong correlations
among features). The problem of multicollinearity will lead to an
approximate singular covariance coefficient matrix, an inaccurate
inverse matrix of the covariance coefficient matrix, consequently,
an inaccurate MD (Taguchi & Jugulum, 2002). MD corresponding
to the adjoint matrix of the covariance coefficient matrix, which
is denoted as MDA, can be used to handle this problem.

MDAi ¼
1
n

ziCadjzT
i ð6Þ

where Cadj is the adjoint matrix of the covariance coefficient matrix
C. Since C�1 = Cadj/|C|, the relationship between MD and MDA is
shown as below.

MDi ¼
1
jCjMDAi ð7Þ

Step II: Validation of MS
Observations of abnormal conditions are selected out first. Their

feature data sets are normalized using the mean and standard
deviation of the normal data set. Then their MDs are calculated
using the normalized feature data and the covariance coefficient
matrix of the normal data set. MDs corresponding to the abnormal
conditions will be out of the MS, if the MS is appropriately con-
structed. In other words, these abnormal conditions associated
MDs will have higher values.

Step III: Identify the useful features

The useful features are selected out using orthogonal arrays
(OAs) and signal-to-noise ratios (S/N ratios). In MTS, OAs are used
to identify the important features by minimizing the different
combinations of the original set of features. The number of col-
umns in OA depends on the number of features. Two-level factors
are used: Level-1 means including the feature, while Level-2 means
excluding the feature. S/N ratios, which are calculated using abnor-
mal conditions only, are used to measure the accuracy of the MS
for predicting. The formula for calculating the S/N ratio (gi) corre-
sponding to the ith run of the OA is defined as below:

gi ¼ �10 lg
1
t

Xt

j¼1

1
MDj

 !
ð8Þ

where t is the number of abnormal conditions, and MDj is the MD of
the jth abnormal condition.
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The useful features are obtained by evaluating the ‘‘Gain’’ in S/N
ratios. The Gain of each feature is calculated using Eq. (9). Features
with positive ‘‘Gain’’ are identified as useful ones.
Gain ¼ S=N ratioLevel-1 � S=N ratioLevel�2 ð9Þ

Step IV: Future diagnosis
The MS is reconstructed and the MDs of monitored products are

calculated by using the useful features identified in Step III. If MDs
are within the MS, the monitored products are normal. If MDs are
out of the MS, the monitored products exhibit abnormal behaviors.
The higher the MDs are, the more deviation between the moni-
tored product and the normal one is.
Normal data

Calculate mean and 
standard deviation

Normalize normal 
data

Calculate correlation 
matrix: C

Calculate MDs of 
normal data

Step I:
Mahalanobis space (MS) 
construction

Abnormal data

Normalize abnormal 
data

Calculate MDs of 
abnormal data to 
validate the MS

Step II:
Validation of MS

 Orthogonal arrays (OAs) and S/N ratios

Step III: Identify the useful features

Use the identified features to reconstruct the MS, and 
calculate MDs for future diagnosis

Step VI: Future diagnosis

Normal data

Calculate mean and 
standard deviation

Normalize normal
data

Calculate correlation
matrix: C

Calculate MDs of 
normal data

Fig. 1. Four steps in Mahalanobis–Taguchi system.
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No
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Fig. 2. MD-based anomaly detection and fault classification approach.

Table 1
Fan ball bearing specifications.

Number of
balls, n

Contact angle,
h (deg)

Pitch diameter of
bearing, D (mm)

Ball diameter, d
(mm)

6 10.4 5.5 1.59

Fig. 3. Cooling fan and accelerometer (Jin et al., 2012; Miao, Azarian, et al., 2011).
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Fig. 4. Histogram of MDs for normal cooling fans.
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Fig. 5. Normal probability plot of Box–Cox transformed variable x.



Table 2
L16(215) OA and MDs of three abnormal conditions.

Run Features MDs S/N ratio

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 1 2 3

1 1 1 1 1 1 1 1 1 1 1 1 1 1 6487.07 35058.32 40776.12 41.61
2 1 1 1 1 1 1 1 2 2 2 2 2 2 2039.66 7067.49 11520.81 36.21
3 1 1 1 2 2 2 2 1 1 1 1 2 2 2743.70 11511.93 14030.36 37.59
4 1 1 1 2 2 2 2 2 2 2 2 1 1 267.45 2129.94 1288.04 27.79
5 1 2 2 1 1 2 2 1 1 2 2 1 1 1417.17 15839.50 10088.97 35.39
6 1 2 2 1 1 2 2 2 2 1 1 2 2 38.25 387.69 106.93 18.96
7 1 2 2 2 2 1 1 1 1 2 2 2 2 131.50 1577.82 1524.24 25.28
8 1 2 2 2 2 1 1 2 2 1 1 1 1 214.49 270.15 131.47 22.74
9 2 1 2 1 2 1 2 1 2 1 2 1 2 87.31 2232.70 432.39 23.24
10 2 1 2 1 2 1 2 2 1 2 1 2 1 965.55 4003.97 3540.23 32.82
11 2 1 2 2 1 2 1 1 2 1 2 2 1 184.50 4523.82 1230.22 26.67
12 2 1 2 2 1 2 1 2 1 2 1 1 2 1180.04 6749.57 5830.14 34.10
13 2 2 1 1 2 2 1 1 2 2 1 1 2 16.02 464.41 127.78 16.17
14 2 2 1 1 2 2 1 2 1 1 2 2 1 119.59 761.88 438.85 24.00
15 2 2 1 2 1 1 2 1 2 2 1 2 1 124.26 476.17 88.17 21.45
16 2 2 1 2 1 1 2 2 1 1 2 1 2 17.52 273.23 105.20 16.31

Table 3
Average S/N ratios and Gain for each feature.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13

Level-1 30.70 32.50 27.64 28.55 28.84 27.46 28.35 28.43 30.89 26.39 28.18 27.17 29.06
Level-2 24.34 22.54 27.40 26.49 26.20 27.58 26.69 26.62 24.16 28.65 26.86 27.87 25.98
Gain 6.36 9.96 0.24 2.06 2.64 �0.12 1.66 1.81 6.73 �2.26 1.32 �0.70 3.08

Table 4
Comparison of MDs before and after screening of features.

Fan
No.

Time All features Features identified by MTS

Mean Range Mean Range

#1 0 h 1.00 [0.63,2.26] 1.10 [0.69,2.74]
8 h 1.17 [0.95,1.41] 1.40 [1.16,1.74]
16 h 0.63 [0.26,1.48] 0.52 [0.24,1.49]
24 h 7.59 [3.20,14.97] 6.76 [3.11,10.72]
48 h 253.37 [161.78,379.10] 155.46 [105.34,220.43]
72 h 17509.39 [2694.15,72321.73] 17425.39 [2494.33,75758.10]

#2 0 h 0.68 [0.43,1.05] 0.77 [0.54,1.06]
8 h 5.72 [2.20,11.65] 4.06 [2.39,6.44]
16 h 21.34 [9.03,35.74] 9.59 [2.88,17.65]
24 h 2.56 [0.71,5.90] 2.63 [0.83,4.85]
48 h 3.42 [2.04,5.34] 4.26 [2.58,6.55]
72 h 36916.99 [18886.76,76503.17] 29195.54 [14597.25,63005.30]

#3 0 h 0.60 [0.46,0.77] 0.76 [0.58,0.98]
8 h 9.65 [6.74,13.73] 5.51 [3.45,8.08]
16 h 420.11 [159.65,831.31] 449.61 [187.89,941.13]
24 h 104.48 [54.43,158.20] 125.78 [67.17,189.14]
48 h 157.59 [75.41,454.01] 173.79 [94.47,398.90]
72 h 48568.64 [22221.06,104192.44] 39932.50 [17269.59,87487.38]
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Fig. 6. MDs of Fan #1.
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2.2. Determine the ranges of MDs

MD is a distance metric with values ranging from zero to
infinity. The higher values of MDs are of concern from an abnormal
perspective. Generally, they do not follow a normal distribution. To
determine the ranges of MDs corresponding to different health
conditions of rotary-machines, Box–Cox transformation is em-
ployed to transform the non-negative variable, MD, into a normally
distributed variable (Box & Cox, 1964). The goodness-of-fit of the
transformed variable from the original MDs can be confirmed by
plotting them into a normal plot. Considering 95.4% of the data
lie within two standard deviations of the mean for a normal
distribution, the limits l ± 2r (l and r are the mean and standard
deviation of the transformed variable) are used to determine the
limits of the Box–Cox transformed MDs. Since the lower limit of
MS is 0, l + 2r is used as the upper limit of transformed threshold
of MS. The inverse Box–Cox transformation is then used to calcu-
late the ranges of MDs corresponding to different health condi-
tions, and the threshold of MS.
3. Approach for anomaly detection and fault classification

The proposed anomaly detection and fault classification ap-
proach starts with the measurement of the vibration signal as
shown in Fig. 2. Both the time domain features and time–frequency
domain features are constructed based on the measured vibration
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Fig. 7. MDs of Fan #2.
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Fig. 8. MDs of Fan #3.

Table 5
Characteristic frequencies of fan ball bearing faults.

Bearing components Characteristic frequencies (Hz)

Ball passing frequency outer race (BPFO) fBPFO ¼ n
2 frð1� d

D cos hÞ ¼ 143:1
Ball passing frequency inner race (BPFI) fBPFI ¼ n

2 frð1þ d
D cos hÞ ¼ 256:9

Ball spin frequency (BSF) fBSF ¼ D
2d fr ½1� ðdD cos hÞ2� ¼ 106:0
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signal. The MD corresponding to normal/healthy data, which is
called as MS, is constructed and validated. Taguchi methods and
signal-to-noise ratios are employed to identify the useful features,
and the MDs for normal and different conditions are calculated
by using the identified useful features. Anomaly detection is done
by comparing MDs with the MS, and fault classification is done by
comparing MDs under different health conditions.

When faults occur in rotary-machines, the increased friction,
impulsive forces, and unbalanced faults cause both the time
domain signal and time–frequency domain signal to deviate from
the normal ones. Therefore, a normal rotary-machine and the
rotary-machines with different faults usually have different data
distributions in their signals. In this paper, nine statistical features
were calculated to represent the vibration signal in the time do-
main. They were root mean square, peak, skewness, kurtosis, crest
factor, clearance factor, shape factor, impact factor, and square
mean root. The vibration signals were also decomposed into indi-
vidual frequency bands by using the algorithm of wavelet packets.
Percentages of energy corresponding to wavelet packets coeffi-
cients were calculated by decomposing the vibration signal by
the wavelet packets transform using ‘‘db4’’ at level 2 (Daubechies,
1988). Thus, thirteen features, which named from X1 to X13 (includ-
ing nine time-domain statistical features and four time–frequency
domain features), formed the feature data set for fault diagnosis
using MTS.
4. Anomaly detection of cooling fan

The analyzed cooling fans data set was collected under high-
temperature (70 �C) stress test. Since lubricant plays a critical role
in cooling fan ball bearings, lubricant was removed from ball bear-
ing to simulate lubricant starvation (Jin, Azarian, Lau, Cheng, &
Pecht, 2011). Ball bearings were NSK 693 ZZ, their geometrical
specifications were shown in Table 1. Three cooling fans were
made by these customized ball bearings, and were regarded as nor-
mal ones before test. A normal cooling fan was also used as a ref-
erence. Cooling fan was mounted on a test plenum, powered by a
12 V DC power supply, and controlled by a pulse width modulation
signal (duty cycle was set at 74%) for data acquisition. The rotation
speed of the fan was 4000 rpm, corresponding to the rotation fre-
quency, fr, of 66.7 Hz. A PCB accelerometer was used to acquire the
vibration signal, as shown in Fig. 3. After the three tailor-made
cooling fans underwent 0-, 8-, 16-, 24-, 48-, and 72-h high-temper-
ature stress tests, their vibration signals and the vibration signal
from the normal cooling fan were measured. The sampling rate
was set at 102.4 kHz. The high-temperature stress test was
stopped when cooling fan’s sound pressure level (SPL) increased
more than 3 dBA from the initial value, which is one of the failure
criteria for cooling fan defined in IPC-9591 (2006).

Feature data sets from the normal cooling fans (including the
referenced normal cooling fan and the three tailor-made cooling
fans at 0-h) were used to form the MS. The MDs of normal cooling
fans were around one; however, they did not follow a normal dis-
tribution, as shown in Fig. 4. Box–Cox transformation with the
parameter k at an optimized value of �0.77 was used to transform
the MDs into a normal distributed variable with a mean of �0.24
and a standard deviation of 0.43. The normal probability plot of
the transformed variable is shown in Fig. 5. The threshold of the
transformed MDs was set as 0.62, which corresponds to the
untransformed MD of 2.37. Therefore, the MS of these cooling fans
is the MDs that range from 0 to 2.37.

All three tailor-made cooling fans failed after they underwent
72-h high-temperature stress tests, since their SPLs increased more
than 3 dBA from the initial values. The vibration signals of the
three cooling fans at 72 h were used to validate the measurement
scale, MS, in Step II of MTS and identify the useful features in Step
III. The failed cooling fan data were normalized using the mean and
standard deviations of the normal cooling fans. Their MDs were
calculated using the covariance coefficient matrix of the normal
cooling fans and were 6487.07, 35058.32, and 40776.12, respec-
tively. They were clearly out of the MS. Hence, the MS is validated.

In Step III of MTS, the impact of each feature was investigated
using OAs and S/N ratios. The Gain of each feature was calculated
for three abnormal conditions of cooling fans. Since 13 features
was constructed, a L16(215) OA was used. As shown in Tables 2
and 3, X6, X10, and X12 did not have a significant impact on MD.
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Fig. 9. Frequency spectrum of the three cooling fans at 72-h (a) Fan #1 (b) Fan #2 (c) Fan #3.
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Therefore, the number of features was reduced from 13 to 10. The
MDs and threshold of MS were recalculated using the identified
useful features. The revised threshold of the MS of the fans was
2.35. MDs of the three fans after they underwent 8-, 16-, 24-, 48-
and 72-h high-temperature stress tests using all features, and the
useful features identified by MTS, are shown and compared in Ta-
ble 4 and Figs. 6–8. The failed cooling fans at 72-h could be clearly
distinguished from the normal fans, since their MDs (ranging from
2494.33 to 87487.38) deviated greatly from the MS. Although there
is little change of mean and range of MDs, which were calculated
by the useful features identified by MTS, compared with original
ones, multicollinearity issue faced by MD was solved, thereby,
making the proposed approach for anomaly detection more robust.

The deviations of MDs at 72-h among the three fans were large.
This was due to the fact that the cooling fan bearings had different
prominent failure modes and different degrees of failure. Referring
to the bearing characteristic frequencies in Table 5 and the 72-h
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Fig. 15. MDs of induction motor under different unbalanced electrical faults at
supply frequency 50 Hz.
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frequency spectrum of vibration signals in Fig. 9, the prominent
failure mode in Fan #1 is the inner race of the ball bearing, while
the prominent failure modes in Fan #2 and Fan #3 are ball failure.
The degrees of the ball failures in Fan #2 and Fan #3 are also
different.

As shown in Table 4 and Figs. 6–8, MDs of Fan #1 at 24-h, and
MDs of Fan #2 and Fan #3 at 8-h are out of MS. Therefore, the pro-
posed method could detect the incipient bearing defects of the
cooling fans. An increased trend in the average of MDs could also
be found; however, they fluctuated. The natural failure process
could explain these fluctuating symptoms. When cooling fan bear-
ings degraded due to the lack of lubricant, the increasing friction
damaged the surfaces of the bearings and resulted in small pieces
of metal dropping off. The dropped metal and the defective bearing
surface were ground smoothly by the continuous operation of the
cooling fan bearings. Hence, the vibration signals became weaker.
However, as the defects grew, the vibration became stronger lead-
ing to the larger MDs, and caused cooling fans to emit abnormal
sounds in the end.
5. Fault classification of induction motor

Unbalanced electrical faults of a three-phase induction motor
were used in this section to demonstrate the effectiveness of the
proposed MD-based method for fault classification. In order to sim-
ulate the unbalanced electrical faults in a three-phase induction
motor, a noninvasive test rig as shown in Fig. 10 was used. The
detection of induction motor unbalance electrical faults was based
on the stator core vibration signals. The data acquisition system
was shown in Fig. 11. The rated power and speed of the induction
motor were 1100 W and 1440 r/min, respectively. Three cases at
different rotation speeds were studied. These were obtained by
feeding the motor with different supply frequencies at 40, 45,
and 50 Hz, respectively. Induction motor was driven under differ-
ent asymmetrical faults by setting different values of the variable
resistor at 10, 30, and 50 X, respectively, at three rotation speeds
each. The vibration signal was measured by an accelerometer
mounted on the induction motor as shown in Figs. 11 and 12.

Feature data sets from the normal induction motor were used to
form the referenced space, MS. MDs of normal induction motors
range from 0 to 2.43 calculated by the methods introduced in Sec-
tion 2.2. Three vibration signals of the induction motor unbalanced
electrical faults were used to validate the MS. The induction motor
fault data were normalized by the mean and standard deviations of
the normal induction motor. Their MDs, which were calculated
using the covariance coefficient matrix of the normal induction
motor, are 4.59, 59.48, and 148.31. They are out of the MS. Hence,
the MS is validated.

MDs corresponding to induction motor’s unbalanced electrical
faults at different rotation speeds are shown in Figs. 13–15. In
Fig. 13, MDs at 10 X overlap with MDs at 30 X heavily; an increas-
ing trend in the MDs representing the increasing degree of faults in
rotary machines could not be observed, since the ranges of MDs at
30 X included MDs at 50 X, and a decreasing trend is shown by
their means. An increasing trend in MDs is shown in Figs. 14 and
15, however, MDs corresponding to different conditions are heavily
overlapped. Therefore, Taguchi methods were employed to investi-
gate the impact of each feature. Since the number of constructed
features was 13, a L16(215) OA was used. The ‘Gain’ of each feature
was calculated under three unbalanced electrical faults conditions
of the induction motor. As shown in Tables 6 and 7, X2, X3, X4, X5,
X8, X9, X11, and X12 do not have a significant impact on MD. Hence,
the number of features was reduced from 13 to 5.



Table 6
L16(215) OA and MDs of three abnormal conditions.

Run Features MDs S/N ratio

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 1 2 3

1 1 1 1 1 1 1 1 1 1 1 1 1 1 4.59 59.48 148.31 10.95
2 1 1 1 1 1 1 1 2 2 2 2 2 2 6.54 54.11 71.75 12.09
3 1 1 1 2 2 2 2 1 1 1 1 2 2 4.25 63.02 141.51 10.65
4 1 1 1 2 2 2 2 2 2 2 2 1 1 6.08 96.68 236.60 12.24
5 1 2 2 1 1 2 2 1 1 2 2 1 1 4.25 69.72 171.96 10.70
6 1 2 2 1 1 2 2 2 2 1 1 2 2 4.82 81.78 175.99 11.24
7 1 2 2 2 2 1 1 1 1 2 2 2 2 7.34 48.91 152.62 12.64
8 1 2 2 2 2 1 1 2 2 1 1 1 1 6.46 69.13 142.50 12.31
9 2 1 2 1 2 1 2 1 2 1 2 1 2 3.34 78.06 195.40 9.76
10 2 1 2 1 2 1 2 2 1 2 1 2 1 4.02 56.69 80.64 10.32
11 2 1 2 2 1 2 1 1 2 1 2 2 1 5.12 63.40 149.53 11.39
12 2 1 2 2 1 2 1 2 1 2 1 1 2 2.81 74.72 193.52 9.04
13 2 2 1 1 2 2 1 1 2 2 1 1 2 2.26 46.59 120.18 8.02
14 2 2 1 1 2 2 1 2 1 1 2 2 1 5.06 62.35 139.42 11.33
15 2 2 1 2 1 1 2 1 2 2 1 2 1 5.10 30.36 68.63 10.90
16 2 2 1 2 1 1 2 2 1 1 2 1 2 3.58 78.08 183.91 10.04

Table 7
Average S/N ratios and Gain for each feature.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13

Level-1 11.60 10.81 10.78 10.55 10.79 11.13 10.97 10.63 10.71 10.96 10.43 10.38 11.27
Level-2 10.10 10.90 10.92 11.15 10.91 10.58 10.73 11.08 11.00 10.74 11.27 11.32 10.44
Gain 1.50 �0.09 �0.14 �0.60 �0.12 0.55 0.24 �0.45 �0.29 0.22 �0.84 �0.94 0.83

Table 8
Induction motor unbalanced electrical faults classification accuracy.

Supply frequency
(Hz)

Unbalanced electrical
faults (X)

Original MDs
(%)

MTS MDs
(%)

40 10 53.33 83.33
30 10.00 80.00
50 0.00 10.00

45 10 63.33 83.33
30 26.67 100.00
50 3.33 100.00

50 10 83.33 93.33
30 90.00 100.00
50 46.67 100.00
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The MDs and MS were recalculated using the identified useful
features by MTS. MDs were transformed into a normal distributed
variable using Box–Cox transformation. Properties of normal dis-
tribution were used to determine the ranges of MDs corresponding
to each fault. The revised threshold of MS is 2.42. MDs of normal
induction motor and induction motor with different faults using
all features and useful features identified MTS were shown and
compared in Figs. 13–15. By narrowing most ranges of MD distri-
butions using MTS, different faults could be distinguished easily
except faults at 50 X with supply frequency at 40 Hz, thereby
improving the performance of MD-based approach for fault classi-
fication. Table 8 shows the classification performance using origi-
nal MDs and MDs enhanced by MTS. MDs enhanced by MTS
achieved the better performance. These results verified the effec-
tiveness of the proposed approach for fault classification of induc-
tion motor’s unbalanced electrical faults.
6. Conclusion

In this paper, a health index, MD, was proposed to indicate the
health condition of cooling fan and induction motor. Anomaly
detection of cooling fan and fault classification of induction motor
were accomplished by constructing feature data set from the vibra-
tion signal and comparing MDs corresponding to different health
conditions. MD is a distance metric with values ranging from zero
to infinity; however, it does not follow a normal distribution. Box–
Cox transformation and properties of normal distribution were
used to determine the ranges of MDs. MDs were enhanced by
Taguchi methods and signal-to-noise ratios to identify the useful
features, for anomaly detection and fault classification. If the
MDs are small and within the MS, their corresponding rotary-ma-
chines are normal/healthy. If the MDs are larger, and out of the MS,
indicating that faults or incipient faults have occurred. The more
defects the rotary-machines have, the larger the MD is.

Cooling fan and induction motor experimental data were
employed to validate the proposed approach. The experimental re-
sults showed that MDs corresponding to failed rotary-machines
deviated greatly from the normal ones. An increasing trend in
the MDs represented the increasing degree of faults in rotary-ma-
chines. Therefore, MDs can indicate the severity of the fault. The re-
sults also show that early stage of failure of cooling fan caused by
bearing generalized-roughness faults can be detected successfully
and different conditions of induction motor due to unbalanced
electrical faults could be classified at a higher accuracy by MTS.
Future work includes health monitoring the ongoing condition of
rotary-machines and predicting machines future state based on
the proposed index, MD, to aid in decision-making and allow for
the avoidance of unscheduled maintenance and the reduction of
economic losses.
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