
IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 16, NO. 1, JANUARY 2005 213

Estimating Optimal Feature Subsets Using Efficient
Estimation of High-Dimensional Mutual Information

Tommy W. S. Chow, Senior Member, IEEE, and D. Huang

Abstract—A novel feature selection method using the concept
of mutual information (MI) is proposed in this paper. In all MI
based feature selection methods, effective and efficient estimation
of high-dimensional MI is crucial. In this paper, a pruned Parzen
window estimator and the quadratic mutual information (QMI)
are combined to address this problem. The results show that the
proposed approach can estimate the MI in an effective and effi-
cient way. With this contribution, a novel feature selection method
is developed to identify the salient features one by one. Also, the
appropriate feature subsets for classification can be reliably esti-
mated. The proposed methodology is thoroughly tested in four dif-
ferent classification applications in which the number of features
ranged from less than 10 to over 15000. The presented results are
very promising and corroborate the contribution of the proposed
feature selection methodology.

Index Terms—Feature selection, Parzen window esti-
mator, quadratic mutual information (QMI), supervised data
compression.

I. INTRODUCTION

SEARCHING important features is essential to improve
the accuracy, efficiency and scalability of a classification

process [1]–[3]. This is especially important when one is re-
quired to deal with a large or even overwhelming feature set,
such as a cDNA dataset [27]. In all feature selection methods,
feature selection criteria are crucial. Different types of feature
selection criteria divide feature selection methods into two
categories: the filter method and the wrapper one [1], [3]. In the
wrapper methods, the classification accuracy is employed to
evaluate feature subsets, whereas, in the filter methods, various
measurements may be used as feature selection criteria [1]. The
wrapper methods may perform better, but huge computational
effort is required [29]. Thus, it is difficult for them to deal with
large feature sets, such as the gene (feature) set of a cDNA data.
The feature selection criteria in the filter methods fall into two
categories: the classifier-parameter-based criterion [4]–[6] and
the classifier-free one [7]–[13]. This paper focuses on the later
one. The popular classifier-free feature selection criteria are
usually based on statistics computed from the empirical distri-
bution. The first-order statistics were employed as the feature
selection criteria in [7] and [8]. These feature selection criteria
are sensitive to data noise [14]. Covariance, the second-order
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statistics, was employed as the feature selection criteria in [9]
and [31]. The major drawback of these second-order statistics
based criteria lies in their sensitivity to data transformation.

Recently, researchers have used mutual information (MI),
which can be considered as higher order statistics [15], to
identify the salient features [10]–[13], [16], [28]. The main
advantages of MI are the robustness to noise and data transfor-
mation. This effect has been detailed in [10], [17], and [18].
Despite these advantages, the estimation of MI poses great
difficulties as it requires the knowledge on the underlying
probability density functions (pdfs) of the data space and the
integration on these pdfs. In [10]–[13], and [16], histograms
were used to estimate pdfs, and the computational difficulty
of performing integration can be circumvented in a very ef-
ficient way. But the sparse data distribution, which is often
encountered in a high-dimensional data space, may greatly
degrade the reliability of histograms [16], [19], [20]. With these
shortcomings, histograms are only applicable to a relatively
low-dimensional data space. For example, in [12] and [16],
feature selection methods were applied only to identify less
than 10 features from the data sets with more than 1000 data
patterns. In [10], [11], and [13], the problems about histograms
were addressed. Only the two-dimensional (2-D) MIs were
directly estimated, whereas the higher dimensional MIs were
analyzed using the 2-D MI estimates. The experimental re-
sults previously presented in [10], [11], and [13] showed the
effectiveness of these methods, but they are still inapt to direct
estimate the high-dimensional MIs. This is quite a major short-
coming and causes two main problems to the MI based feature
selection methods [10], [11], [13]. First, they are suboptimal
in a sense that the selected features are individually, instead
of globally, considered when the relevancy between the input
features and the output class labels is measured. Thus, they are
unable to deliver correct results when the relationship between
the input and the output variables is strongly nonlinear. Second,
without the knowledge on the amount of information contained
in the selected features, the selection process cannot be stopped
in an analytical way. Instead, the selection process must be
terminated at a predetermined point. As a result, the selected
features may either have certain useful information missed out
or have included certain redundancy feature. The abovemen-
tioned problems can be overcome using direct estimation of the
MI between the selected input features and the output. This is
detailed in Section II-C.

In this paper, an effective and efficient approach to direct es-
timate MI is derived. A supervised data compression algorithm
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is introduced for pruning a Parzen window estimator. Based on
the pruned Parzen window estimator, quadratic mutual infor-
mation (QMI) [18] is employed to reduce the computational
complexity of MI estimation. We, accordingly, call the proposed
MI estimate method as QMI-P. The presented results show that
the proposed QMI-P can provide a huge computational reduc-
tion when one is handling a large data set. With the proposed
QMI-P, a toward optimal feature selection methodology using
MI (OFS-MI) is developed. In the proposed method, not only are
the salient features effectively identified, the appropriate feature
subsets can also be estimated in an analytical way. Two MI based
criteria are used to guide the feature selection process. The first
criterion is the feature relevance criterion (FRC). It searches for
the important features. The second one is the feature similarity
criterion (FSC), that is employed to avoid the highly redundant
results. With these two criteria, the OFS-MI exhibits two major
advantages. First, OFS-MI is able to determine the most promi-
nent feature at each feature selection cycle. The direct MI esti-
mation guarantees optimal or near-optimal features to be iden-
tified even when it is handling a highly nonlinear problem. At
the same time, the introduced FSC avoids the high redundancy
in the selected feature set. The effectiveness of OFS-MI can be
clearly illustrated by the presented results. Second, attributed to
the characteristics of the direct MI estimates, the feature selec-
tion process can be stopped analytically. Hence, the appropriate
feature subsets can be systematically determined from any given
large feature set. This contribution is important when a given
data set contains a huge number of features, such as the cDNA
data set consisting of over fifteen thousand features.

This paper is organized as follows. Section II gives the back-
ground of the MI-based feature selection method and summa-
rizes the related work. Section III introduces the estimation of
MI using QMI-P. Section IV details the proposed feature selec-
tion methodology, that consists of two MI-based criteria and a
modified forward searching process. In Section V, it introduces
several feature evaluation indexes. Then, extensive experimental
results are presented in Section VI. And the conclusions are
drawn in Section VII.

II. BACKGROUND

A. Definition of MI

In accordance with Shannon’s information theory [15], the
uncertainty of a random variable can be measured by the en-
tropy . For two variables and , the conditional entropy

measures the uncertainty about when is known,
and the MI measures the certainty about that is re-
solved by . Apparently, the relation of , and

is

equivalently

(1)

The objective of training classification model is to minimize
the uncertainty about predictions on class labels for the
known observations . Thus, training a classifier is to increase

the MI as much as possible. Zero value of
means that the information contained in the observations
is not useful for determining their classes . The goal of
a feature selection process for classification is naturally to
achieve the higher values of with the smallest possible
size of feature subsets. With the entropy defined by Shannon,
the prior entropy of is expressed as

(2)

where represents the probability of . The conditional en-
tropy is

(3)

The MI between and is

(4)

B. Estimation of MI

The pdfs are required to estimate the MI. One of the most pop-
ular ways to estimate MI is to use a histogram as a pdf estimator.
In a 2-D data space, a histogram can be constructed feasibly, but
there are problems in a high-dimensional data space. 1) The in-
crease of data space dimension may have significantly degraded
the estimation accuracy due to the sparse distribution of data, es-
pecially when the size of data set is relatively small [16], [19],
[20]. 2) The required memories exponentially increase with the
number of dimensions.

Continuous kernel-based density estimators can avoid the
above problems. Actually, kernel-based density estimator is a
more accurate approach than histograms [19], [20]. But with
continuous kernel based pdf estimators, the integral operation
in MI poses a major computational difficulty. In [18] and [22],
the QMI (5) was developed

(5)

When the Guassian function is employed for estimating the
pdfs, the property of Gaussian function, i.e.

can simplify the integration in the QMI (5) to summation. In
this way, the QMI (5) can be calculated efficiently. However,
in a forward feature selection process where great deals of MI
estimates are required, there is still a need to improve the com-
putational efficiency of the MI estimation approach mentioned
in [18] and [22], especially when one is handling a huge data
set.
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Fig. 1. Relation between input feature variables and output classes in terms of
MI.

C. MI-Based Forward Feature Selection and the Related Work

The forward feature selection process in terms of MI [10],
[11] can be formulized as follows:

1) (initialization) Set to the initial feature set, to the
empty set;

2) , compute ;
3) find the feature that maximizes , put into

and delete it from ;
4) (greedy searching) repeat until the stopping criterion is

met
a) calculate , ;
b) choose the feature that maximizes

. put into and delete it from .
5) output the features set .

Actually, in this forward process, the MI between the se-
lected input variables and the output class labels
gradually increases because the addition of input variables
cannot decrease [16]. Also, the incremental
decreases gradually to zero when all the relevant features are
selected. Hence, this forward process can be stopped when the
gradient of is small enough when it indicates that the
features beyond contain negligable additional information
for classification.

Due to the abovementioned high-dimensional histograms
problems, Battiti [10] and Kwak [11] did not direct estimate
the MI . In their methods, a high-dimensional
conditional MI, , is analyzed with the related 2-D MI
estimates. As shown in Fig. 1, can be represented
by the area , and can be represented by

. To analyze , Battiti’s MI feature selection (MIFS)
used , and Kwak’s MI feature selec-
tion scheme under uniform information distribution (MIFS-U)
employed .

These methods are acceptable because the area is
common for . But, the lack of direct estimation on the
high-dimensional MI causes two main problems, i.e., subopti-
mization and the lack of estimation on the appropriate feature
subsets. This has been detailed in Section I. The direct estima-
tion on MI can overcome these two shortcomings. Hence, we
consider a direct MI estimation. Also, it is worth noting that

there is no principled guide to effectively deal with the redun-
dancy of the given feature set in MIFS and MIFS-U. In these
methods, the parameter determines their capability of han-
dling the redundancy and is quite important. But the principle
on selecting the value of was not discussed. The selection of

is, apparently, rather problem dependent. Different from the
MIFS and the MIFS-U, the proposed methodology handles the
highly redundant features in a principled way.

III. ESTIMATION OF MI USING THE PROPOSED QMI-P

There is a dilemma when one is estimating MI with kernel-
based density estimators. When the number of components in a
kernel-based density estimator is large, estimating MI is com-
putationally difficult or even impossible. On the other hand, it is
desirable to have more components because more components
can enhance the accuracy of the MI estimate. The requirements
for correctly identifying the most prominent features, however,
are not very strict in a sense that it is not necessary to determine
the real MI. For a feature selection process, it is sufficient and
necessary to guarantee that the relative ordering of the MI es-
timates remains correct. That is, given three variables , ,
where it is known that , the MI estimates
are acceptable when the estimate of is larger than the
estimate of . Hence, it is possible that a relatively small
data set is able to deliver accurate feature selection results. Thus,
we employ a data compression procedure to reduce the com-
putational complexity of the feature selection but without af-
fecting the feature selection effectiveness. In this section, a data
compression algorithm is proposed to prune a Parzen window
estimator. Using the pruned Parzen window estimators and the
QMI, the proposed estimation method (QMI-P) addresses the
computational difficulty of estimating MI in an effective and ef-
ficient way. The contributions of QMI-P will be fully elaborated
by the presented results.

A. Supervised Data Compression Algorithm

Two important issues must be taken into account when one
is designing a data compression algorithm for estimating MI.
First, a moderate compression assures a reliable MI estimation.
Second, an unsupervised type of data compression algorithm
is not preferred for estimating the MI between the input vari-
ables and output classes. In the proposed algorithm, data points
are first partitioned into several clusters in a supervised way.
Then, certain data points are sampled from the clusters in ac-
cordance with the size of the clusters. The supervised clustering
algorithm described in this paper is an iterative process. At each
iteration, the nearest cluster is firstly determined from a
randomly selected data point, . If has the same class label of

, it is put into , or a new cluster is generated. The clus-
tering process continues until all the data patterns are clustered.
Let and be
the input and the output data, respectively, M be the number of
features, be the class label set. The data
compression algorithm can be expressed as follows.
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Procedure supervised data compression

1. (Initialization)

For class I (1 � k � N ), create a cluster u in

which the center g is the average of the patterns

belonging to class l .

2. (Clustering)

Repeat the following steps until there is no pat-

tern for clustering. Randomly select a data point

x. Find the nearest cluster

u to x according to the distance of x to the

cluster centers.

. If x and u have the same class label, put x

into u ,

and modify the center of u as the average of all

the data

points in the cluster u , otherwise, create a new

cluster for x. And x will be rejected in the re-

maining cluster process.

3. (Data sampling)

Set the sampling data SX to be empty. Randomly

select certain

patterns from each cluster and put them into SX.

If the variance

of the data points in a cluster is less than � ,

put the one

pattern of that cluster into SX. For a cluster in

which the

variance is larger than � , and if the number of

the patterns

of that cluster is more than 10, put 10 patterns

from that cluster

into SX, otherwise, put all the data patterns

into SX.

The parameter is selected as 0.05 because all the data
used in this paper are normalized to have zero means and unit
variances. Before further discussion, the following notations are
briefed. Let the cluster set be the result
of the above supervised clustering process on , be the
number of data points in cluster . Thus, we have

. Let be the results
of the above data sampling process on ,
and be the number of the data points sampled from cluster

. The size of is . With these
notations, the proposed compression algorithm can be described
as a process in which all the data points in are firstly parti-
tioned into homogenous subgroups. Then, the number of
data points in each subgroup (say ) is reduced from to .

B. Proposed Method to Estimate MI—QMI-P

Conventional Parzen window estimator [21] assumes that
is uniformly distributed, i.e., . In the proposed
density estimator, in order to make use of more information con-
tained in the original data set, the assumption of a uniform dis-

tribution is not applied. Based on the compressed data set ,
we calculate with

(6)

Hence, with the compressed data set , the marginal and the
conditional pdf can be estimated as

(7)

(8)

(9)

where

(10)

In the Gaussian function (10), is determined from the vari-
ance matrix of the overall data, is the bandwidth of the kernel
function. In this paper, all input data are normalized to unit vari-
ances. Hence, we set . And, the method in [23] is used to
determine , i.e., . With
the pdf estimators shown in (7)–(9), the QMI can be calculated
as

(11)

where
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C. Evaluation of QMI-P

In order to evaluate the proposed QMI-P, comparisons were
made by using a synthetic data set consisting of two classes
{0, 1}. The data were generated from a mixture of two normal
distributions

Class data points

Class data points

The overlapping between the two classes is determined by the
variance . It can be concluded that a small overlapping be-
tween the two classes means a larger value of MI ,
i.e., increases with the decrease of . In our study,
three estimates of MI were compared. MI-p represents the re-
sult calculated using the proposed QMI-P; MI-w represents the
result calculated using the conventional Parzen window estima-
tors constructed with the whole data set ; and MI-s repre-
sents the results of the conventional Parzen window estimators
constructed with the compressed data set SX. In this section,
the real MI (MI-r) is used as reference. The numerical analysis
method was employed to approximate MI-r, i.e.

(12)

61 61 data samples evenly distributed in the range of
( 3, 3)–(3, 3) were used to calculate (12).

Given a fixed size of data set, say 2000 data patterns, different
values of the variance were tried. For the same , 10 inde-
pendently data sets were generated and tested. The averages of
these 10 trials are presented in Fig. 2. The relative ordering of the
MI values can be correctly estimated by using MI-p and MI-w.
Based on the compressed data set, MI-s is found to be an un-
reliable approach mainly because too much information of the
original data set was discarded when estimating the MI.

MI-p is further compared with MI-w in terms of computa-
tional efficiency. The computational complexity of MI-p and
MI-w mainly depends on the number of components of the
pdf estimators. With an increase on the size of data set, the
computational complexity of MI-w increases rapidly, whereas
the computational complexity of MI-w might not be signif-
icantly increased with the contribution of the proposed data
compression algorithm. In our study, with , the data
sets of different sizes (from 400 to 5800 data patterns) were
used to give comparisons of the running time for cal-
culating MI-p and MI-w. Fig. 3 illustrates these comparative

Fig. 2. Comparison of different MI estimates. The presented results are the
averages of 10 trials. MI-p is the result of the proposed approach QMI-P; MI-w
and MI-s is the result of the approach proposed in [18] on the original data and
the reduced data, respectively.

Fig. 3. Comparison of running time t between MI-p and MI-w. MI-p is
the results of the proposed approach QMI-P; MI-w is the result of the approach
proposed in [18].

results. Obviously, with the increase of the number of data
patterns, the computational saving caused by the data com-
pression algorithm becomes increasingly significant. In the
example of 4000 data patterns, for calculating MI-w is
about 40 times of that for calculating MI-p.

The above comparisons in terms of their correctness and the
computational efficiency show that the proposed QMI-P is the
most suitable approach for a MI-based forward feature selection
process.

IV. TOWARDS OPTIMAL FEATURE SELECTION USING QMI-P

The proposed OFS-MI consists of two MI-based criteria,
namely FRC and FSC, and a modified forward searching
algorithm.

A. MI-Based Criteria

The feature relevancy criterion FRC is aimed at selecting the
relevant features. And the FSC is used to reduce the redundancy
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in the selection results. Both of them are calculated by using the
proposed estimation approach QMI-P.

Suppose that a feature set S has been selected from .
The FRC of a feature is defined as

FRC (13)

which is calculated by using (11).
The FSC is to measure the similarity between the feature

subset and a single feature . It is known that the
MI must be large when the MI of with any feature
in is large. That is, if is very similar to ,
must be similar (or redundant) to . With this idea, the FSC of
a feature to a feature set , is defined as

FSC (14)

Based on the relationship between entropy and the MI described
in (1), we have

Obviously, FSC with equality if and only if has
no additional information beyond . When FSC is large
enough, i.e., FSC , the feature can be considered
as a redundant feature for , and should not be added into .
Throughout the paper is set to 0.9.

Only the 2-D MI estimates are needed for calculating FSC
(14). For the features and , the results obtained in Sec-
tion III-A is

. in (14) can be estimated by using

(15)

where

The entropy in (14) can also be estimated by using (15)
in that .

B. Forward Feature Selection Process With the MI-Based
Criteria

The proposed OFS-MI is a forward and iterative process,
which begins with an empty feature set and additional features
are included one by one. Based on FRC and FSC, the forward
feature selection process in the OFS-MI is realized as follows.
The diagram of OFS-MI is shown in Fig. 4.

Fig. 4. Block diagram of the proposed feature selection methodology OSF-MI.

Step 1) Set F to the initial feature set, to the empty set, the
iteration number .

Step 2) Find out the feature having the maximal FRC. Put
into and delete it from . The iteration number

is 1. Remember the FRC of this iteration as FRC
FRC .

Step 3) Estimate FRC , .
Step 4) Repeat until an appropriate feature is added into or

there is no features remaining in .
a) Choose the feature having the maximal FRC, and

delete from .
b) If FSC , then put into , ,

FRC FRC .
Step 5) If FRC FRC FRC , then delete from

and goto Step 6, otherwise, goto Step 3.
Step 6) Estimate the appropriate number of selected features

ANSF as ANSF , where B
satisfies FRC FRC .

Step 7) Output the set and ANSF.

V. FEATURE SUBSET EVALUATION INDEX

In this paper, four indexes, namely NNG, KNNG, , and
, are adopted to evaluate the effectiveness of the selected

feature subsets. The first two indexes are based on the results of
different classification models.
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A. NNG and KNNG

NNG represents generalization accuracy of a standard neural
network based classifier, KNNG represents that of the -NN
rule. All these classifier models are available in Weka software
[30]. The parameters of classifiers were set to the default values
in our study. Obviously, among the several feature subsets of
the same size, the one with the best classification performance
is considered to be the best.

B. Class Separability

Class separability of a data set is calculated by

trace (16)

where is the between class scatter matrix, and is the
within class scatter matrix [24]. Assume that is the mean
vector of the data points belonging to the class , is the mean
vector of all the data points, and is the a priori probability
that a data point belongs to class , we have

and

where is the number of class. A high value of the class sepa-
rability index ensures that the classes are well separated by their
scatter means. That is, in order to obtain a better classification
performance, a large value of is preferred.

C. Square Chernoff Bound Distance

In this paper, a new feature evaluation index, square chernoff
bound distance , is introduced. For the two classes , ,
the minimum classification error attainable by Bayes classifier

[25] satisfies

where . Based on this inequality, for the classification
data set mentioned in Section III-A, is defined as

(17)

Obviously, can be calculated by putting

A feature subset with a small is able to deliver better clas-
sification results.

VI. RESULTS AND DISCUSSION

In this section, the proposed OFS-MI is evaluated from two
main perspectives—the effectiveness on the feature selection,
and the reliability of estimating the appropriate number of the
ANSF. Despite the fact that MIFS and MIFS-U are not able to
estimate the ANSF, they are included in our comparative study
to highlight the improvement caused by the direct MI estimates
at the high-dimensional scenario. The comparative results are
expressed in terms of the evaluation indexes mentioned in Sec-
tion V. As for verifying the estimates on ANSF, a priori knowl-
edge in a synthetic data set can be used. In a real application,
verifying the estimate on ANSF poses practical difficulties be-
cause the ideal ANSF is not known. In this study, we use the per-
formance of different classifiers to handle this difficulty. When
all the classifiers can obtain their best or near-best performance
within the ANSF, it can be reasonably concluded that the es-
timation of the ANSF is reliable. Two types of classifiers, the

-NN rule and a standard neural network model, are employed
for this purpose.

In this study, four classification data sets were used. These
include two synthetic data sets and two real data sets. The first
synthetic data set highlights the advantages of the proposed
OFS-MI when dealing with highly nonlinear problem. The
highly redundant LED domain data set was used to verify the
capability of dealing with the redundancy and irrelevance in the
feature set. And the cDNA ovarian cancer classification data
is used to highlight the importance of introducing the OFS-MI
when one is required to deal with huge number of features.

In the OFS-MI, is used to determine the
range of the number of selected features. As shown in Fig. 5 and
Fig. 7, too small values of will lead to a wider range of ANSF.
In this case, the feature sets with little information are con-
sidered appropriate ones. Clearly, without enough information,
these feature sets could not assure a respectable classification
performance. Thus, a relative large is preferred. Throughout
this study, is used. Also, is used to determine when
the selection process should be stopped. Ideally, should be as
close to zero as possible in order to include all the required in-
formation. In this paper, is considered a small enough
index for delivering a promising performance.

A. Synthetic Highly Nonlinear Data Set

The four-dimension (4-D) synthetic data
was generated in this experiment, which

consists of 2000 patterns belonging to two classes .
For the input variable , 500 patterns were generated from
the normal distribution , and other 1500 patterns
were generated from ; for , 500 patterns were
generated from the normal distribution , and other
1500 patterns were generated from . The input
variable is equal to the square of , and is equal to
the square of . The class of a pattern
is determined by . Obviously, the input
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Fig. 5. FRC on a highly nonlinear data set.

TABLE I
ORDER ON SELECTION OF A HIGHLY NONLINEAR DATASET WHICH CONSISTS

OF THE FOUR INPUT VARIABLES X ;X ;X ;X

variables and are considered more important than
and in this classification task. The proposed data

compression method greatly reduced the number of data
patterns from 2000 to 99.

Table I shows the selection results of the compared methods.
It indicates that only OFS-MI is able to identify the relevant
features correctly. Both MIFS and MIFS-U are not able to
obtain the correct results when they are handling this highly
nonlinear classification problem. In Fig. 5, which shows the
change of FRC with the number of selected features, it shows
that ANSF is estimated. This result is consistent with the a
priori knowledge of this data set.

B. Highly Redundant LED Data Set

The data set of LED display domain [26] has 24 features, in
which the first 7 features determine the class label of a pattern,
whilst the rest 17 features are irrelevant. In our study, 1000 data
patterns were generated. In order to further examine the capa-
bilities of dealing with irrelevant features and redundant fea-
tures, other 24 redundant features are added to increase the total
number of features to 48. These 24 redundant features are gen-
erated from corrupting the original 24 features by noise with
a normal distribution . After the proposed data com-
pression process, the number of data patterns was reduced from
1000 to about 500.

First, OFS-MI was compared with others in terms of their ef-
fectiveness. With the a priori knowledge, all the compared fea-
ture selection methods were required to select 7 features, and
their selection results were listed in Table II. In this table, and

denote the original feature and its corresponding redundant
feature, respectively. The redundant features were underlined in

TABLE II
RESULTS OF FEATURE SELECTION METHODS ON THE HIGHLY REDUNDANT

LED DOMAIN DATA SET. THE REDUNDANT FEATURES ARE UNDERLINED

Fig. 6. FRC on the highly redundant LED data set.

Table II. Apparently, when we were dealing with this highly re-
dundant feature set, only MIFS with or and
OFS-MI are able to deliver the correct results, whereas MIFS-U
failed to avoid the redundancy in the selected feature set in
all cases. Also, it shows that is very important to MIFS and
MIFS-U in a way that it can greatly affect their selection results.
But as analyzed in Section II-C, there is not discussion on se-
lecting the value of .

Second, the change of FRC with the number of selected fea-
ture is shown in Fig. 6. It shows that an estimate of ANSF

is obtained. And based on the knowledge that only the first 7
features are relevant to classification task, it can be concluded
that the estimate of ANSF is correct.

C. Spambase Data Set

This data set was used to classify emails into spam or non-
spam category. It consists of 4601 patterns in which 2000 are
training patterns, and other 2601 are testing patterns. It has 57
numerical input variables and 2 output classes.

The effectiveness of the different feature selection methods
was compared. All these methods were required to select 3, 6, 9,
12, 15, 18, 21, and 24 features, respectively. Fig. 7 illustrates the
comparative results in terms of four evaluation indexes, in which
(a) and (b) indicate that the proposed OFS-MI enables different
classifiers to achieve the best performance in most cases. Also,
the performance of the OFS-MI is much better especially when
the number of the selected features is less than 21. In terms of
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Fig. 7. Comparisons of different feature selection methods on the spambase
dataset. (a) NNG: the generalization accuracy of neural network based classifier.
(b) KNNG: the generalization accuracy of k-NN rule. (c) cs: class separability.
(d) scbd: square chernoff bound distance.

other evaluation indexes, and , the proposed OFS-MI is
still able to deliver better results than other methods, as shown
in Fig. 7(c) and (d).

Fig. 8. FRC and its gradient on the spambase dataset. (a) FRC. (b) Gradient
of FRC. (c) Classification results to verify the estimate on ANSF.

In this application, the changes of FRC and its gradient with
the number of selected features are illustrated in Fig. 8(a) and
(b). The feature selection process in OFS-MI stopped when 21
features were selected, and it was estimated that ANSF

. The classification performance of the k-NN and the neural
network model are illustrated in Fig. 8(c), which verifies the
estimate of ANSF . It is noted that the k-NN and
the neural network model achieved their best performance when
the numbers of selected features were 12 and 18, respectively.
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Fig. 9. Comparisons of different feature selection methods on the ovarian
classification cDNA dataset. (a) NNG: NN-based classifier generalization
accuracy. (b) KNNG: k-NN rule generalization accuracy. (c) cs: class
separability. (d) scbd: square chernoff bound distance.

All these classifiers were able to obtain the best or the near best
performance within ANSF . The estimate of
ANSF is reliable.

Fig. 10. FRC and its gradient on the ovarian classification cDNA data set.
(a) FRC. (b) Gradient of FRC. (c) Classification results to verify the estimate on
ANSF.

D. cDNA Data for Ovarian Cancer Classification

The objective of this classification is to identify proteomic
patterns in serum that distinguishes ovarian cancer from non-
cancer [27]. There are 253 data samples, and each sample con-
tains 15154 features—genes. We partitioned the data set into
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two disjoint parts, 150 data samples were used for training and
103 were used for testing. The proposed data compression ap-
proach was not applied to this data set because the original data
set is small. Hence, all the data points were used to construct the
pdf estimators, i.e., .

In order to effectively dealing with the data set containing a
large quantity of features, all the compared methods filtered out
the features with no or less information before the feature selec-
tion process begins to run. That is, all the features were firstly
ranked in the order of MI . Then, only the most impor-
tant 600 features were left behind for the forthcoming iterative
feature selection process.

In Fig. 9, the comparison results of OFS-MI, MIFS, and the
MIFS-U are illustrated in Fig. 9. Obviously, OFS-MI is much
more effective than the other methods in this example. The
changes of FRC and its gradient with the number of selected
features are shown in Fig. 10(a) and (b). With these results,
OFS-MI delivered a result of ANSF . In Fig. 10(c),
it illustrates the classification accuracy of the -NN and the
neural network model. It is noted that, using the features
selected by OFS-MI, the -NN and the neural network model
can deliver their best performance with the first three features.
Accordingly, the estimate of ANSF is considered
reliable in this application.

VII. CONCLUSION

This paper describes a newly developed MI-based feature se-
lection methodology. Attributed to the MI-based criteria, the
proposed feature selection methodology offers two major con-
tributions. First, the optimal or the near-optimal features can be
effectively identified. The problem of highly redundant features
is also addressed. Second, the appropriate feature subsets are
estimated in a systematic way. The later contribution is impor-
tant when one is dealing with a huge feature set, such as the
cDNA data set. The generalization performance or the a priori
knowledge corroborates that the proposed methodology is able
to provide reliable estimates on the appropriate feature subsets.
This type of information is essential for constructing an appro-
priate classifier.
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