
Binary- and Multi-class Group Sparse
Canonical Correlation Analysis for Feature

Extraction and Classification
Zhao Zhang, Student Member, IEEE, Mingbo Zhao, Student Member, IEEE, and

Tommy W.S. Chow, Senior Member, IEEE

Abstract—This paper incorporates the group sparse representation into the well-known canonical correlation analysis (CCA)

framework and proposes a novel discriminant feature extraction technique named group sparse canonical correlation analysis

(GSCCA). GSCCA uses two sets of variables and aims at preserving the group sparse (GS) characteristics of data within each set in

addition to maximize the global interset covariance. With GS weights computed prior to feature extraction, the locality, sparsity and

discriminant information of data can be adaptively determined. The GS weights are obtained from an NP-hard group-sparsity

promoting problem that considers all highly correlated data within a group. By defining one of the two variable sets as the class label

matrix, GSCCA is effectively extended to multiclass scenarios. Then GSCCA is theoretically formulated as a least-squares problem as

CCA does. Comparative analysis between this work and the related studies demonstrate that our algorithm is more general exhibiting

attractive properties. The projection matrix of GSCCA is analytically solved by applying eigen-decomposition and trace ratio (TR)

optimization. Extensive benchmark simulations are conducted to examine GSCCA. Results show that our approach delivers promising

results, compared with other related algorithms.

Index Terms—Canonical correlation analysis, group sparse representation, multiclass classification, feature extraction

Ç

1 INTRODUCTION

THE classical canonical correlation analysis (CCA) [1], [2]
is a standard multivariate analysis technique relying

on two sets of variables. CCA maximizes the correlations
between the projections of the variables onto the obtained
pairs of basis vectors. CCA has attracted considerable
interests in theoretical studies [3], [4], [5], [6], [7] and
practical applications, for example, gene expression [8],
[9], [10], [11]. CCA was originally proposed for dealing
with two sets of variables in an unsupervised manner. It
was extended to handle multiclass classification problems,
i.e., multiclass CCA (MCCA) [3], by setting one set of
variables being the class label matrix. Then the labels of
data samples can be conducted for discriminant feature
extraction (FE) and subsequent multiclass classification.
According to [3], class information is usually represented
in a form of numerical label encodings. In particular,
when proper label encodings are applied, MCCA can be
equivalent to linear discriminant analysis (LDA) [12].
Another interesting relationship under a mild condition
between the least squares (LS) and CCA in multiclass case
has been rigorously established in [3] and [13].

Recently, many neighborhood preserving graph algo-
rithms, for example, Laplacian Eigenamps (LE) [14], locally

linear embedding (LLE) [15], and ISOMAP [16], were
proposed for nonlinear dimensionality reduction. The core
step of neighborhood preservation is to construct the
neighborhood graph and define the weights [14]. This
process essentially involves the operation of finding the
neighbors of each point by certain methods, for example,
k-neighborhood or "-neighborhood [14]. But the determina-
tion of optimal k and " values is still an open problem. In
addition to the above problems, the adjacency graph with
fixed k or " fails to consider the actual data distribution
[25]. More recently, sparse representation (SR) has become
increasingly popular and important in various areas,
for example, pattern recognition [17], [18], [25] and machine
learning [19], [20], [21]. Sparse graph weights are usually
calculated using l1-minimization [17], [20]. As studied in
[19], the locality and sparsity of samples can be adaptively
determined in l1-graph. By adapting the elastic net into
CCA, a penalized CCA (PCCA) was proposed, in which
CCA was penalized as an iterative regression. A Lasso
penalty was then applied to find the canonical vectors [9].
PCCA was subsequently generalized for identifying candi-
date genes for incorporation in the pathway [11]. Note that
two parameters for ridge and Lasso penalties are involved,
but estimating optimal penalty parameters is still difficult
[5]. By including a sparseness parameter to control the
number of variables to be contained from each set, a sparse
CCA (SCCA) was first used for genomic data integration [8].
Another format of SCCA [7] was proposed by formulating
CCA in both primal (input) and dual (kernel) representation
for both views. This setting minimizes the number of
features in both primal and dual projections while max-
imizing the correlation between the two variable sets. Note
that kernel trick is used in [7], but estimating an optimal
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kernel width is still a difficult issue. Wiesel et al. [19]
discussed an SCCA that maximized the correlation by
obtaining a pair of linear combinations with prescribed
cardinality. Lykou and Whittaker [5] have also developed an
extended SCCA algorithm for the first two dimensions with
the positivity Lasso. A common property of these SCCA
versions is that they generally work similarly as CCA does.
All of these kinds of SCCA seek a pair of 1D sparse
projection vectors for representing the two sets of variables,
but obtaining multiple projection vectors are required in the
general pattern recognition applications. However, how to
extend these SCCA methods to handle multiclass classifica-
tion through delivering multiple projection axes is still
unclear. Note that virtually all previous SCCA methods are
proposed for performing gene selection in the areas of
bioinformatics [22]. In contrast, we in this paper are
proposing a general multiple projections-based discriminant
FE criterion for feature reduction and pattern recognition.

Compared with the other existing SCCA methods, this

present work exhibits several properties.

1. For a group of highly correlated samples, SR tends to
select one single point from the group [24], so l1-
norm is not an ideal choice for ensuring selection of
all correlated samples in a group [23]. Group
sparsity [23], [32] was introduced to ensure that all
weights for a particular class are selected, delivering
a grouping effect. This work mainly considers group
sparsity [23] in FE. We incorporate the concept of
group sparsity into CCA and establish a novel group
sparse canonical correlation analysis (GSCCA) tech-
nique. GSCCA is originally proposed for handling
binary-class cases as CCA, which may constrain its
certain applications, for example, multiclass classifi-
cation. We also extend GSCCA to multiclass case by
setting one set of variables as the class label matrix.
GSCCA is motivated by sparsity preserving projec-
tions (SPP) [25], but it differs from SPP in three
aspects. First, GSCCA relies on two sets of variables
as CCA does, but SPP only works on one set of
variables. Second, multiclass GSCCA is a supervised
method, but SPP is naturally unsupervised. Third,
SPP calculates the sparse reconstruction weights by
l1-minimization, while GSCCA considers group
sparsity. In extracting the representative features,
GSCCA focuses on maximizing the global interset
covariance while computing the multiple projections
that best preserve the GS characteristics within the
two variable sets at the same time.

2. In GSCCA, GS weights are calculated directly from
an NP-hard group-sparsity promoting minimization
problem solved by faster greedy algorithms prior to
FE. As a result, data of a particular class can be well
grouped. Also, GSCCA can avoid estimating the
model parameters, that is, kernel width and neigh-
borhood size. By adding the sum-to-one constraint
to the NP-hard problem, the GS reconstruction
procedure can enable GSCCA to preserve certain
local information of data [25].

3. GSCCA exhibits a strong generalization power. By
comparing GSCCA with the related work, LDA,

MCCA, and SPP are treated as special cases of our
approach.

4. GSCCA delivers multiple projections for representa-
tion. The basis vectors can be calculated by using
eigen-decomposition and TR optimization. When
eigen-decomposition is applied, we mathematically
formulate GSCCA as an LS problem and detail an
inherent equivalence between them. When TR
criterion is used, specific solution and similarity
preservation are simultaneously obtained according
to the orthogonal constraints [26]. It is owing to these
properties that GSCCA is applicable to various tasks,
such as multiclass classification, multidimensional
data visualization and feature extraction, but pre-
vious SCCA methods are unable to cope with.

The paper is outlined as follows: Section 2 reviews CCA.
In Section 3, we mathematically propose GSCCA. Section 4
compares this work with the related works. We also show
binary-class and nonlinear GSCCA. Section 5 describes the
simulations and results.

Notations. Denote by N the number of samples. Let X ¼
½x1; . . . ; xN � 2 IRn�N and Y ¼ ½y1; . . . ; yN � 2 IRc�N be cen-
tered variable sets, i.e.,

PN
i¼1 xi ¼ 0, and

PN
i¼1 yi ¼ 0, where

xi 2 IRn (or, yi 2 IRc) is the ith column of X (or, Y ), n and c
are the data dimensionalities of X and Y sets, respectively.
k�k is l2-norm, and k�kF denotes the Frobenius norm of a
matrix. Trð�Þ is trace operator, Ay denotes the pseudoin-
verse of matrix A, AT is the transpose of matrix A, I is an
identity matrix, and e 2 IRN is a vector of all ones.

2 CANONICAL CORRELATION ANALYSIS

Given N pairs of variables ðxi; yiÞ; i ¼ 1; 2; . . . ; N , CCA
seeks two optimal projection vectors blx and bly such that the
correlation coefficient � between the variables blxTxi andblyTyi, i ¼ 1; 2; . . . ; N , is maximized. Thus, we have

� ¼
blxTPN

i¼1 xiy
T
i
blyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiblxTPN

i¼1 xix
T
i
blxq
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiblyTPN

i¼1 yiy
T
i
blyq

¼
blxTXY TblyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiblxTXXTblxq
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiblyTY Y Tblyq ;

ð1Þ

where XY T is the interset covariance matrix, XXT and Y Y T

are the intraset covariance matrices. Then the multiple

projection matrices cLX ¼ ½clx1
jclx2
j � � � jclxd1

� 2 IRn�d1 and cLY ¼
½ bly1
j bly2
j � � � jclyd2

� 2 IRc�d2 , satisfying d1 � n and d2 � c, can be

obtained from the following problems:

XY TðY Y TÞ�1YXT 0

0 YXTðXXTÞ�1XY T

 ! blxbly
 !

¼ � XXT 0

0 Y Y T

� � blxbly
 !

;

ð2Þ

where � is the canonical correlation to be optimized. CCA is

originally derived to handle two data sets directly. By

setting Y 2 IRc�N to be the specific class indicator matrix [3],

[13], where c is the number of classes, CCA can then be

extended for supervised FE in multilabel scenarios [3], [13],
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[28], referred to as MCCA. In such case, MCCA only needs

to compute cLX for representing the sample set X and

applies embedded data for subsequent visualization and

classification. The commonly used class-label encoding

approaches are one-of-c encoding [29], c-1 label encoding

[29], f�1; 1g encoding [30] and soft-label encoding [3]. The

projection matrix cLX can be obtained by solving the

following generalized problem:

MaxbLX Tr
�cLXXY TðY Y T þ �þIÞ�1YXTcLX�;
S:t: cLXXXTcLX ¼ I; ð3Þ

where �þIð�þ > 0Þ is a multiply of identity matrix to
prevent the overfitting and avoid the singularity of Y Y T.
Note that when the class-label encoding is properly
assigned, MCCA is equivalent to LDA [3]. There exits an
equivalence between MCCA and LS in multilabel classifica-
tion scenarios [13]. For X and Y sets, the objective function
and solution ��LS of LS can be defined as

Min
�

XN
i¼1

k�Txi � yik2 ¼ k�TX � Y k2
F ; ��LS ¼ ðXXTÞyXY T:

ð4Þ

Based on the equivalence between MCCA and LS, the
optimal solution of MCCA can be calculated by solving an
LS problem, which is more efficient than directly solving
the generalized eigen-problems of MCCA.

3 GROUP SPARSE CANONICAL CORRELATION

ANALYSIS

3.1 Robust Sparse Representation

SR aims to compute the compact representation of images.
Extensive studies have demonstrated the effectiveness of SR
in representing and recognizing images.

3.1.1 Sparse Reconstruction Weights and SPP

For a set of samples xi; i ¼ 1; 2; . . . ; N in c classes, SR
represents each xi using as few points in X ¼ ½x1; x2; . . .;
xN � 2 IRn�N as possible [25]. Let si ¼ ½si;1; . . . ; si;i�1; 0;
si;iþ1; . . . ; si;N �T be an n-dimensional coefficient vector, in
which the ith entry of si is equal to 0 and si;jði 6¼ jÞmeasures
the contribution of each xj for reconstructing xi. Let
Cardfsi;jjsi;j 6¼ 0g be the set cardinality, i.e., the number of
nonzero elements in si, the pseudo-l0 norm of si, i.e.,ksikl0 ,
can be define as

Min
si
ksikl0 ¼ Cardfsi;jjsi;j 6¼ 0g; S:t: xi ¼ Xsi; ð5Þ

which is a combinatorial computational problem, i.e., NP-
hard. Note that the above problem can be solved by
approximating l0-norm to l1-norm (or, Lasso regularization)
[31]. Then (5) can be written as

Min
si
ksikl1 ; S:t: kxi �Xsik < "; eTsi ¼ 1; ð6Þ

where " is an error tolerance, xi �Xsi is the compensation

for reconstructing xi, and the sum-to-one constraint

enables the solution S ¼ ½s�1; s�1; . . . ; s�1� to preserve some

local characteristics of data [20], [25], where s�i ; i ¼
1; 2; . . . ; N are obtained optimal vectors. Thus, a weighted

graph GD ¼ ðX;SÞ can be obtained, where S is an edge

weight matrix representing the sparsity of data sets. The

discriminative information can also be preserved by S due

to nature of SR.
Based on the weight vectors s�i , SPP [25] was proposed

by seeking a projection matrix P 2 IRn�d that best preserve
the optimal weight vector s�i by minimizing

Min
P

XN
i¼1

��PTxi � PTXs�i
��2

¼ TrðPTXðI � S � ST þ STSÞXTPÞ;
ð7Þ

where d is the reduced dimension. According to [25],
remakrable results are delivered by SPP for subspace
learning, robust representation and recognition.

3.1.2 Group Sparse Reconstruction Weights

As elaborated in [23] and [32], samples of a class are highly
correlated, so l1-minimization is not the best choice for
ensuring selection of all correlated samples from a
particular group. To address this issue, group sparse
classifier (GSC) [23], [32] was introduced. GSC assumes
that training data of a particular class approximately form a
linear basis for any sample of the class [23]. Let xki be
ith sample of the class k and eski be the coefficient vector
associated with the ith sample of class k, then for a new
sample xkp from the kth class, we have

xkp ¼ esk1xk1 þ esk2xk2 þ � � � þ eskNk
xkNk
þ ";

where Nk is the sample number of class k. By extending

(7) to all classes, we obtain xp ¼ X esp þ ", where esp ¼ ½es1
1
; . . . ;es1

N1
; . . . ; esk

1
; . . . ; eskNk

; . . . ; esc
1
; . . . ; escNc

�T. This assumption holds

if es is group sparse [23]. That is, the solution of the inverse

problem of xp ¼ X esp þ " should have nonzero coefficients

corresponding to a particular group of training samples and

zero elsewhere. The solution is obtained by

Minesp ��esp��l2;0 ; S:t: ��xp �X esp�� < "; eT esp ¼ 1; ð8Þ

where the mixed l2;0-norm of esp ¼ ½es1
1
; . . . ; es1

N1
; . . . ; esk

1
; . . . ;eskNk

; . . . , esc
1
; . . . ; escNc

�T is defined as jjespjjl2;0 ¼Pc
k¼1 �ðjjespjj >

0Þ, where �ðjjespjjÞ ¼ 1 if jjespjj > 0. Note that constraint

eT esp ¼ 1 for each point p of X set is also imposed to the l2;0-

norm problem. It is easy to check that the above mixed l2;0-

norm problem is NP-hard. According to [32], this problem

can be convexly relaxed by optimizing the following mixed

l2;1-norm problem:

Minesp ��esp��l2;1 ; S:t: ��xp �X esp�� < "; eT esp ¼ 1; ð9Þ

where jjespjjl2;1 ¼ jjes1jj þ jjes2jj þ � � � þ jjeskjj þ � � � þ jjescjj with

jjeskjj ¼ ½esk1; . . . ; eskNk
�. According to [23], [32], (9) can provide

an approximation to (8), but the involved quadratic

programming is computational expensive. To solve the

l2;0-norm problem directly, certain faster greedy algorithms,

for example, group orthogonal matching pursuit (GOMP)
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and block orthogonal matching pursuit (BOMP), are

proposed in [32]. These greedy algorithms first identify

the group with nonzero coefficients using block or group

selection strategy, then the coefficients for the group

indexes are estimated [32]. As a result, all weights for a

particular class can be selected. Results verified the

effectiveness and efficiency of these greedy algorithms,

compared with convex optimization. In this work, we use

the GOMP [32] to optimize the NP-hard problem and thus

the groups are selected based on the highest individual

correlation during iterations. Similarly, eS ¼ ½es�1; es�2; . . . ; es�N �
can be defined as the edge weights of an adjacency graph

GS ¼ ðX; eSÞ on the X set, where es�i is optimal vector

calculated from (9).
With analogous arguments, we obtain the group sparse

weight vectors for reconstructing each point yp in Y set from
solving the following l2;0-norm problem:

Minerp ��erp��l2;0 ; S:t: ��yp � Y erp�� < "; eT erp ¼ 1; ð10Þ

where erp ¼ ½er1
1; . . . ; er1

N1
; . . . ; erk1; . . . ; erkNk

; . . . ; erc1; . . . ; ercNc
�T with

jjerkjj ¼ ½erk1; . . . ; erkNk
�. The optimal solution eR ¼ ½er�1; er�2; . . . ;er�N � 2 IRN�N over the Y set can also reflect some local

geometric properties of data, where er�i is optimal vector

calculated from (10). Similarly, eR can be treated as an edge

weight matrix of an adjacency graph GR ¼ ðY ; eRÞ over

Y set. We in next subsection detail the proposed algorithm.

Since our technique integrates the group sparsity with CCA,

this algorithm is referred to as group sparse CCA (GSCCA).

3.2 The GSCCA Objective Function

For given the variable sets X and Y , GSCCA similarly

seeks to calculate two optimal projection matrices cLX ¼
½clx1
jclx2
j � � � jclxd1

� 2 IRn�d1 and cLY ¼ ½ bly1
j bly2
j � � � jclyd2

� 2 IRc�d2 to

represent X and Y , respectively. In extracting the informa-

tive features, motivated by SPP, GSCCA aims at achieving

the projections that best preserve the group sparse

coefficient vectors es�i and er�i addressed from the X and Y

sets respectively, and at the same time maximizing the

global interset covariance. This enables us to define the

following optimization problem for calculating the optimal

GSCCA projection axes:

Maxblx;bly
blxT
PN

i¼1
xiy

T
i
blyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiblxT

PN

i¼1

�
xi�Xes�i��xi�Xes�i�Tblxq

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiblyT
PN

i¼1

�
yi�Yer�i��yi�Yer�i�Tblyq : ð11Þ

Based on simple algebra formulations as [25], we have

XN
i¼1

�
xi �Xes�i ��xi �Xes�i �T ¼ XðI � eS � eST þ eST eSÞXT;

ð12Þ

XN
i¼1

�
yi � Y er�i ��yi � Y er�i �T ¼ Y

�
I � eR� eRT þ eRT eR�Y T:

ð13Þ

By substituting (12) and (13) into (11), we obtain

Maxblx2IRn;bly2IRc

blxTXY Tbly; S:t: blxTXPXX
Tblx

¼ blyTY PY Y
Tbly ¼ 1;

ð14Þ

where PX ¼ I � eS � eST þ eST eS and PY ¼ I � eR� eRT þeRT eR. From (14), the projection matrices cLX and cLY can be
obtained. As a result, FE can be performed in the forms ofcLXTX and cLY TY . This enables us to use compact represen-
tations of points to subsequent classification or clustering.

3.3 Computational Analysis

Here, we show the method of computing cLX and cLY . Note
that eTes�i ¼ 1 for each index i, we then haveX

i

eTðI � eS � eST þ eST eSÞh i
i

¼
X
i

eTI � eT eS � eT eST þ eTð eST eSÞh i
i

¼
X
i

ðeTIÞi �
X
i

ðeT eSÞi �X
j

eT
i es�i;jþX

j;v

eT
v es�i;ves�j;v

¼ 1� 1�
X
j

eT
i es�i;j þX

v

es�i;v ¼ 0:

ð15Þ

Thus, the row-sums and column-sums of the sym-

metric matrix PX are zeros. By a complete analogous

argument, we obtain
P

i ½eTðI � eR� eRT þ eRT eRÞ�i ¼ 0 due

to the fact that eTer�i ¼ 1 for each i. So PX and PY can be

considered as the graph Laplacian matrices as [33]. Thus

by setting W
ðXÞ
i;j ¼ ðeS þ eST � eST eSÞi;j if i 6¼ j, and else 0,

we can obtain HðXÞ ¼ DðXÞ �W ðXÞ, where DðXÞ is a

diagonal matrix with entries D
ðXÞ
ii ¼

P
j W

ðXÞ
i;j and HðXÞ is

the graph Laplacian matrix of W ðXÞ. It should be noted

that similar definitions exist for PY , that is W
ðY Þ
i;j ¼

ð eRþ eRT � eRT eRÞi;j when i 6¼ j, and else 0. Also we can

have D
ðY Þ
ii ¼

P
j W

ðY Þ
i;j and HðY Þ ¼ DðY Þ �W ðY Þ. So the

vectors blx and bly can be obtained from

Maxblx2IRn;bly2IRc

blxTXY Tbly; S:t: blxTXHðXÞXTblx
¼ blyTYHðY ÞY Tbly ¼ 1:

ð16Þ

The Lagrangian function of (16) with variables blx; bly; �x,
and �y can then be expressed as

bJ�blx; bly; �x; �y� ¼ blxTXY Tbly � �x
2

�blxTXHðXÞXTblx � 1
�

� �y
2

�blyTYHðY ÞY Tbly � 1
�
:

ð17Þ

By taking derivatives to variables blx and bly, we have

@ bJ=@blx ¼ XY Tbly � �xXHðXÞXTblx ¼ 0 ) XY Tbly
¼ �xXHðXÞXTblx; ð18Þ

@ bJ=@bly ¼ YXTblx � �yYHðY ÞY Tbly ¼ 0 ) YXTblx
¼ �yYHðY ÞY Tbly: ð19Þ
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Since blxTXHðXÞXTblx ¼ 1 and blyTYHðY ÞY Tbly ¼ 1, by sub-

tracting blyT� (19) from blxT� (18) and zeroing it, we get

0 ¼ blxTXY Tbly � �xblxTXHðXÞXTblx
� blyTYXTblx þ �yblyTYHðY ÞY Tbly
¼ �yblyTYHðY ÞY Tbly � �xblxTXHðXÞXTblx
¼ �y � �x:

ð20Þ

Let �y ¼ �x ¼ �, from the equation of (19), we have

1

�
ðYHðY ÞY TÞ�1YXTblx ¼ bly: ð21Þ

When Y ¼ ½y1; . . . ; yN � is set to be a class label set,

GSCCA can be applied for multiclass classification. In such

cases, GSCCA only needs to compute cLX for representing

sample set X. This work mainly discusses multiclass

GSCCA. Hereinafter we will still name the multiclass

GSCCA as GSCCA. Note that binary-class GSCCA problem

will be discussed and evaluated in Section 5.1, that is, both

X and Y are sample sets. By substituting bly into the equation

of (18) and left multipling both sides of (18) by blxT,

we obtain the following problem:

Maxblx2IRn

�2
x ¼

blxTXY TðYHðY ÞY TÞ�1YXTblxblxTXHðXÞXTblx : ð22Þ

Since YHðY ÞY T is a positive and semidefinite matrix, the

inverse of YHðY ÞY T may be singular. So a regularized term

�þI with a parameter �þ is added to YHðY ÞY T for the

stability consideration. Note that, in multiclass GSCCA, Y is

set to be the class label matrix and each paired yl;i and yl;j of

class l are the same and are equally important, so

computing the sparse weight eR is meaningless. This paper

simply sets HðY Þ to be an identity matrix due to the

computational consideration. Since HðXÞ ¼ DðXÞ �W ðXÞ, the

above problem can be rewritten as

Maxblx2IRn

�
ð1� ‘þÞblxTXY TðYHðY ÞY T þ �þIÞ�1YXTblx
þ ‘þblxTXW ðXÞXTblx	.�blxTXDðXÞXTblx	; ð23Þ

where ‘þð2 ½0; 1�Þ is a parameter for balancing the tradeoff

between XY TðYHðY ÞY T þ �þIÞ�1YXT and XW ðXÞXT, and

DðXÞ is an identity matrix. Next, we show the solutions.

3.4 Effective Solution Schemes

This section elaborates two solution strategies to calculate

the GSCCA projection matrix for embeddings.

3.4.1 Computing GSCCA via Trace Ratio Optimization

We first use the TR optimization to solve (23). Under TR

criterion, the orthogonal constraint cLXTcLX ¼ I is imposed.

Let g�ðXÞ ¼ ð1� ‘þÞY TðYHðY ÞY T þ �þIÞ�1Y þ ‘þW ðXÞ, (23)

can then be expressed in matrix form as the following TR

criterion [26], [27], [34] based problem:

MaxbLX2IRn�d1 ; bLXT bLX¼I
Tr
�cLXTXg�ðXÞXTcLX�

Tr
�cLXTXDðXÞXTcLX� : ð24Þ

To solve TR problem, Guo et al. [34] have proved that the
global optimum of TR problem can be equivalently
obtained by solving a trace difference (TD) problem,
i.e., to find the best TR value �� and optimum matrix cLX�
is equivalent to find the zero point of the TD function:

F ð�Þ ¼ arg maxbLXT bLX¼I Tr
�cLXTðXg�ðXÞXT���XDðXÞXTÞcLX�

¼ 0:

Then the optimal cLX� is given by

cLX� ¼ arg maxbLXT bLX¼I Tr
�cLXT

�
Xg� Xð ÞXT � ��XD Xð ÞXT

�cLX�:
ð25Þ

Another effective algorithm called iterative trace ratio

(ITR) [27] was recently proposed to solve TR problem. ITR

tackles the TR problem by directly optimizing the objective

TrðcLXTXg�ðXÞXTcLXÞ=TrðcLXTXDðXÞXTcLXÞ when the col-

umn vectors of cLX are orthogonal together. For a given �v

at each iteration v , the projection matrix cLXv is obtained by

solving the following TD problem:

cLXv ¼ arg maxbLXT bLX¼I Tr
�cLXT

�
Xg� Xð ÞXT � �vXDðXÞXT

�cLX�:
ð26Þ

Then �vþ1 is renewed using cLXv as:

�vþ1 ¼ Tr
�cLXvTXg�ðXÞXTcLXv�=Tr�cLXvTXDðXÞXTcLXv�

until convergence. Mathematical proof show that ITR
converges to the global optimum [26]. Note that ITR
initializes cLX0 to be an arbitrary orthogonal matrix, so
ITR maybe unstable due to randomness. And it is difficult
to guarantee the orthogonal property of initialized cLX0 and
a bad initialization may greatly increase the number of
iteration. This work initials �0 ¼ 0 instead of initializing cLX0

to be columnly orthogonal matrix as [26]. The procedures of
using ITR to solve GSCCA are described in Algorithm 1.
Under the TR criterion, the projection matrix cLX is
orthogonal, thus similarity preservation and more specific
solution can be obtained [26], [27]. We name this scheme as
orthogonal GSCCA (o-GSCCA).

3.4.2 Computing GSCCA via Eigen-Decomposition

In this case, we aim to solve Max bLX TrðcLXT
Xg�ðXÞXTcLXÞ;

S:t:cLXTXDðXÞXTcLX ¼ I. The projection axes in cLX include

the leading eigenvectors of matrix ðXDðXÞXTÞyXg�ðXÞXT. By

performing singular value decomposition (SVD) [35] to

XDðXÞXT, we can obtain

XD Xð ÞXT ¼ U �2
t 0

0 0

� �
UT; ð27Þ

where U is an orthogonal matrix and �2
t is a diagonal matrix.

Let U ¼ ½U1; U2� be a partition of U such that U1 2 IRn�t and
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U2 2 IRn�ðn�tÞ, where t is the rank of XDðXÞXT and U2 lies in

the null space of XDðXÞXT, i.e., UT
2 XD

ðXÞXTU2 ¼ 0 . Sinceg�ðXÞ is a symmetrical matrix, it can be decomposed by

Cholesky decomposition as g�ðXÞ ¼ eG eGT, where eG is a lower

triangular matrix. Let fHb ¼ X eG, we can have Xg�ðXÞXT ¼fHb
fHb

T. Denote H ¼
P�1

t UT
1
fHb and let H ¼ P

P
b Q

T be the

SVD of H, where P and Q are orthogonal matrices and
P

b

is a diagonal matrix with rank q, we obtain

X�1

t

UT
1
fHb
fHb

TU1

X�1

t

¼ HHT ¼ P
X2

b

PT: ð28Þ

According to the equations in (27) and (28), we have

ðXDðXÞXTÞyðXg�ðXÞXTÞ

¼ U
P�1

t

P�1
t 0

0 0

 !
UTfHb

fHb
TU

P�1
t

P
t 0

0 0

 !
UT

¼ U
P�1

t 0

0 0

 !
P
X2

b

PT

P
t 0

0 0

� �
UT

¼ U
P�1

t P 0

0 I

 ! P2
b 0

0 0

 !
PT
P

t 0

0 I

� �
UT:

ð29Þ

Let L�GSCCA ¼ U1

P�1
t Pq, where Pq consists of the first

q columns of P when only the first q diagonal elements ofP
b are nonzero, we have ðXDðXÞXTÞyðXg�ðXÞXTÞL�GSCCA ¼P2
b L
�
GSCCA. That is, L�GSCCA includes the optimal projection

vectors of GSCCA. Note that the cost function of GSCCA in

(23) can also be treated as a ratio trace (RT) problem [26],

[27], which can be efficiently solved by using the general-

ized eigen-decomposition (GED) [35]. We still refer to this

solution scheme of using GED as GSCCA. Similar to [3],

[13], based on the above eigen-decomposition, we can easily

establish an equivalent relationship between GSCCA and

LS, as addressed in Section 4.1.

3.4.3 Computational Complexity of GSCCA and

o-GSCCA

The complexity of our algorithms mainly includes two
parts. The first part is to calculate the GS weights.
Considering that traditional convex optimization for sparse
problems is time-consuming [32], to speedup this process,
an greedy GOMP algorithm [23], [32] is used to obtain the
GS weights. At each iteration of GOMP, the group average
of the correlations is calculated and the group with the
highest average is selected, and GOMP is proved to be much
more efficient than convex optimization with effectiveness
guaranteed [23], [32]. The second part is to compute
the projection matrix for transformation. For GSCCA, the
projection matrix is obtained by eigen-decomposition and
the computational complexity is Oðn3Þ or Oðn2dÞ, if the first
d eigenvectors are to be achieved. For o-GSCCA, eigen-
composition is also performed in the Step 3 of Algorithm 1,
so the computational complexity at each iteration is also
Oðn2dÞ. If o-GSCCA converges after t iterations, the total
complexity of o-GSCCA is Oðn2dtÞ .

4 RELATED WORK: CONNECTION AND DISCUSSION

This section discusses some issues related to our method.

4.1 Equivalence between GSCCA and LS

4.1.1 Relation to Least Squares

Further to the LS problem in (4), if we choose a class
indicator matrix as Y ¼ eGT , we have XY T ¼ fHb . Thus, the
solution of LS can be rewritten as ��LS ¼ ðXXTÞyfHb, which
can also be equivalently reformulated as

ðXXTÞyfHb ¼ U
P�1

t

P�1
t 0

0 0

 !
UTfHb

¼ U1

X�1

t

�X�1

t
UT

1
fHb

�
¼ U1

X�1

t
H ¼ U1

X�1

t
P
X

b
QT

¼ L�GSCCA
X

b
QT:

ð30Þ

Since Q is an orthogonal matrix, it can be neglected if
the similarity of samples is based on euclidean distance. So
the main difference between L�GSCCA and ��LS is the diagonal
matrix

P
b . If

P
b is an identity matrix, we can have

��LS ¼ L�GSCCA. This can only be hold when

rankðXXTÞ � rankðXg�ðXÞXTÞ ¼ rankðXXT �Xg�ðXÞXTÞ

[3], [13]. Otherwise, the LS problem can be solved by the
two-stage approach [43] detailed in the next section.

4.1.2 Two-Stage Approach for Optimization

For the two-stage approach, one first solves an LS problem
by regressing X on Y T, i.e., projecting high-dimensional
data set to lower dimensions. We can then calculate an
auxiliary matrix M 2 IRc�c and its SVD. Finally, the optimal
projection matrix can be obtained from the SVD of M. Since
the size of matrix M is small, the computational cost for
calculating the SVD of M is lower. The steps of two-stage
approach can be summarized as
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1. solve the LS problem Min� k�TX � Y k2
F ;

2. let bX ¼ �TX, by defining an auxiliary matrix M as
M ¼ bXY T, we can then calculate the SVD of M as
M ¼ UM�MU

T
M and set V �M ¼ UM�

�1=2
M ; and

3. the projection matrix is given by V �TS ¼ �V �M .

Next, we elaborate that V �TS is equivalent to that in (29).

By solving the LS problem, we can have � ¼ ðXXTÞ�1XY T .

We thus obtain bX ¼ �TX ¼ YXTðXXTÞ�1X and an aux-

iliary matrix M is defined as

M ¼ bXY T ¼ YXTðXXTÞ�1XY T ¼ fHb
TU1

X�1

t

X�1

t
UT

1
fHb:

ð31Þ

The second “¼ ” holds as fHb ¼ XY T and XXT ¼
U1

P2
t U

T
1 . Since H ¼

P�1
t UT

1
fHb and its SVD is H ¼

P
P

b Q
T, we have M ¼ HTH ¼ Q

P2
b Q

T. Equation (31)

indicates that Q
P2

b Q
T is the SVD of M, we thus have V �M ¼

Q
P�1

b and the optimal projection matrix by two-stage

approach can be given by

V �TS ¼ �V �M ¼ ðXXTÞ�1XY TQ
X�1

b

¼ U1

X�1

t

�X�1

t
UT

1
fHb

�
Q
X�1

b

¼ U1

X�1

t
P
X

b
QTQ

X�1

b
¼ U1

X�1

t
P ;

ð32Þ

which is just equivalent to the optimal solution in (29).

4.2 Connection between MCCA, LDA, SPP, and
Multiclass GSCCA

Here we describe the inherent relationship among MCCA
[3], SPP [25] and our GSCCA. Recalling the criterion
of GSCCA in (23, if ‘þ is set to 0 and HðY Þ is set to be the
identity matrix, (23) can be converted to

MaxbLX Tr cLXTXY TðY Y T þ �þIÞ�1YXTcLX
 �
;

S:t: cLXTXXT cLX ¼ I; ð33Þ

which is just the criterion of MCCA. Thus, MCCA can be
considered as a special case of our GSCCA. Based on the
relationship between MCCA and LDA [3], when a proper
label encoding is used, GSCCA with ‘þ ¼ 0 can also be
equivalent to LDA. Similarly, when ‘þ is set to constant 1,
we obtain the following problem from (23):

MaxbLX Tr cLXTXW ðXÞXTcLX
 �
¼

Tr cLXTX eS þ eST � eST eS
 �
XTcLX
 �

; S:t: cLXTXXðT ÞcLX ¼ I;
ð34Þ

which is just the problem of SPP. So SPP is also treated as a
special case of our GSCCA method.

4.3 GSCCA in Binary-Class Case and Evaluation

Note that GSCCA is originally proposed for handling
two data sets X ¼ ½x1; . . . ; xm� 2 IRn�N and Y ¼ ½y1; . . . ;
ym� 2 IRc�N . To enable GSCCA to handle multiclass
problems, Y set is set to be a class label set, which includes

the class labels of samples. This section mainly considers
GSCCA in binary-class case, referred to as binary GSCCA
(BGSCCA). For BGSCCA, X and Y are all sample sets, so
BGSCCA also needs to obtain cLY ¼ ½ bly1

j bly2
j � � � jclyd2

� to
represent the samples of Y set. Also, the weight matrices
PX ¼ I � eS � eST þ eST eS and PY ¼ I � eR� eRT þ eRT eR need
to be calculated for representing sample sets X and Y ,
respectively. Note that HðY Þ will be computed from PY
instead of being simply set as an identity matrix. According
to (18), we have

1

�

�
XHðXÞXT

��1
XY Tbly ¼ blx: ð35Þ

Since HðY Þ ¼ DðY Þ �W ðY Þ, by substituting blx into (19) and
left multipling both sides of (18) by blyT, we can similarly
obtain the following problem as (23):

Maxbly2IRc

�2
y ¼

blyTY g�ðY ÞY TblyblyTYDðY ÞY Tbly ; ð36Þ

where g�ðY Þ ¼ ð1� ‘þÞXTðXHðXÞXT þ �þIÞ�1X þ ‘þW ðY Þ,

�þI is a regularization factor and DðY Þ is an identity matrix.

Note that cLY can be similarly gained as computing cLX by

eigen-decomposition or TR optimization. We still call the

binary-class GSCCA as BGSCCA if eigen-decomposition is

used. We refer to the ITR-based BGSCCA as orthogonal o-

BGSCCA. Note that under TR criterion, the orthogonal

constraint cLY TcLY ¼ I is always imposed.
We examine BGSCCA and o-BGSCCA for multivariate

visualization. The results are compared with LDA, principal
component analysis (PCA), maximum margin criterion
(MMC) [36], CCA, MCCA, ITR-based LDA (TR-LDA) [26]
and SPP. This study uses the synthetic control chart time
series data set, or simply synthetic-control (Available
at http://archive.ics.uci.edu/ml/data sets/Synthetic+
Control+Chart+Time+Series) from the UCI ML repository.
The data set has 600 examples of synthetically generated
control charts included in six different classes. So each class
has 100 samples. The experimental settings are detailed in
Section 6. For visualization by CCA, BGSCCA, and o-
BGSCCA, we create a binary-class problem by merging the
first, fourth, and fifth classes into a single set (X), and
the remaining classes form another sample set (Y ). In the
simulations, we assume X and Y sets have zero means.
For PCA, LDA, MMC, MCCA, TR-LDA, and SPP, each
kind of control chart corresponds to a single class. In our
study, 20 points from each kind of control chart (totally
120 examples) are selected for learning the basis vectors.
After the projection matrix of each method is obtained, all
data are projected onto the projection directions for
computing low-dimensional embeddings. For CCA,
BGSCCA, and o-BGSCCA, paired matrices cLX and cLY are
achieved. Then X and Y sample sets are represented by cLX
and cLY , respectively. For feature reduction, we set the
number of reduced dimensions d1 ¼ d2 ¼ 2 in our simula-
tion. Then 2D representations are got.

We illustrate the 2D embedding of each method in Fig. 1.
Note that we still use different colors and shapes to
represent different kinds of control charts. We have the
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following observations. 1) PCA, LDA, MMC, MCCA, SPP,
and TR-LDA represent partial data well, but most points of
different control charts are still congregated in the embed-
ding spaces. Specifically, these methods cannot deliver
separated embeddings of the fourth and sixth classes
effectively. The embedded data of the third and fifth classes
are also mixed in their reduced spaces. 2) Compared with
PCA, LDA, MMC, MCCA, SPP, and TR-LDA, CCA
represents most of points appropriately and exhibits better
result. But CCA still suffers from the problem of congregat-
ing partial data. On the contrary, our proposed BGSCCA
and o-BGSCCA give clearer organizations and can separate
the data into their natural clusters with higher intercluster
and interclass separation. That is, BGSCCA and o-BGSCCA
can implicitly emphasize the natural clusters of points
within each class and give separated clusters between
different classes.

4.4 Kernelized GSCCA for Nonlinear FE

This section considers nonlinear GSCCA. We call the
kernelized GSCCA as KGSCCA that seeks a projection
matrix d�X ¼ ½c�x1

jc�x2
j � � � jd�xd1

� to represent sample set X .
Let � be a mapping from IRn to a high-dimensional space
ZZpðp	 nÞ [41]. This mapping can be implicitly defined by a
kernel. Specifically, the (i,j)th entry of a kernel matrix K is
given by Kij ¼ Kðxi; xjÞ ¼ �ðxiÞT�ðxjÞ. Gaussian RBF ker-
nel [41] is a typical choice of kernels and is defined as

Kðxi; xjÞ ¼ expð�jjxi � xjjj2=2�2Þ: ð37Þ

Rewriting every basis vector in ZZp as an expansion in

terms of mapped data, blx and bly can be written as the

projections of data onto the directions b�x and b�y, respec-

tively, i.e., blx� ¼ �ðXÞ b�x and bly� ¼ �ðY Þ b�y, where b�y is

another projection vector. Then GSCCA in kernel space

can be written as

Maxb�x2IRN ; b�y2IRN

b�xT�ðXÞT�ðXÞ�ðY ÞT�ðY Þ b�y;
S:t: b�xT�ðXÞT�ðXÞHðXÞ�ðXÞT�ðXÞ b�x ¼ 1b�yT�ðY ÞT�ðY ÞHðY Þ�ðY ÞT�ðY Þ b�y ¼ 1:

ð38Þ

Let KXX ¼ �ðXÞT�ðXÞ and KYY ¼ �ðY ÞT�ðY Þ be N �N
kernel matrices over X and Y sets, respectively. By

substituting the matrix inner product into (38), we have

Maxb�x2IRN ; b�y2IRN

b�xTKXXKYY b�y
S:t: b�xTKXXHðXÞKXX b�x ¼ b�yTKYY HðY ÞKYY b�y ¼ 1:

ð39Þ

Observing from (14) and (39), we see they are of similar

expression. The major difference is that data and class label

matrices are now represented in the form of matrix inner

product. So the basis vectors b�x and b�y can be obtained by

similar methods as solving GSCCA. The detailed computa-

tions will not be provided in this paper due to page

limitation. So, the problem for computing the projection

axes in d�X can be formulated as

ZHANG ET AL.: BINARY- AND MULTI-CLASS GROUP SPARSE CANONICAL CORRELATION ANALYSIS FOR FEATURE EXTRACTION AND... 2199

Fig. 1. The 2D embedding result of each method on the synthetic-control data set.



Maxb�x2IRN

b�xTKXX
g�ðXÞKXX b�xb�xTKXXDðXÞKXX b�x ; ð40Þ

where g�ðXÞ ¼ ð1� ‘þÞKYY ðKYY HðY ÞKYY þ �þIÞ�1KYY þ
‘þW

ðXÞ. Note that the above problem in multidimensional

case can be effectively solved by using the generalized eigen-

decomposition or orthogonal TR optimization shown in

Section 3.3. After obtaining the optimal projection matrixd�X ¼ ½c�x1
jc�x2
j � � � jd�xd1

� and the corresponding eigenvalues

��1 
 �
�
2 
 � � � 
 �

�
d1�1 
 �

�
d1

. feature reduction can be simi-

larly conducted. Specifically, the embedding,rðxrÞ , of �ðxrÞ
from the sample set X can be represented as

rðxrÞ ¼
� ffiffiffiffiffi

��1

q c�x1

���� ffiffiffiffiffi
��2

q c�x2

���� . . .

���� ffiffiffiffiffiffiffiffiffiffiffi
��d1�1

q d�xd1�1

���� ffiffiffiffiffiffiffi
��d1

q d�xd1

�T

Kðx1; xrÞ
Kðx2; xrÞ
� � �

KðxN; xrÞ

0BBB@
1CCCA:

ð41Þ

As KGSCCA represents data by inner product, it allows

us to conduct feature reduction on the nonvectorial data, for

example, [42]. But kernelized methods heavily depend on

the selection of kernel function and its width, since different

kernels deliver different properties [41]. But to date there is

still no theoretical guarantee of optimal selection of the

kernels, so we mainly examine the linear methods.

5 SIMULATION RESULTS AND ANALYSIS

In this section, we conduct simulations on benchmark UCI
and real data sets to examine GSCCA and o-GSCCA. The
performance of our methods is compared with PCA, LDA,
MMC, MCCA, TR-LDA, SPP, sparse locality preserving
projection (SLPP) [21] and spectral regression discriminant
analysis (SRDA) [44], where SPP, SLPP, and SRDA deliver
sparse solutions. All algorithms are implemented in
MATLAB 7.1. The codes of SLPP and SRDA with default
parameter settings, available from http://www.cad.zju.
edu.cn/home/dengcai/Data/SR.html, are applied here.
For classification, one-nearest-neighbor (1NN) classifier
with euclidean metric is used. The setting of " is the same
as of [25] and the parameter ‘þ is chosen by cross validation.
For semi-definite matrix inverse operation involved meth-
ods, the regularization factor is set to 0.01 in all studies. For
MCCA, GSCCA and o-GSCCA, the one-of- c encoding [29]
is used to define the class label matrix, but it needs not to be
centered according to [3], [29]. We performed all simula-
tions on a PC with Intel(R) Core (TM) i5 CPU 650 at
3.20 GHz 3.19 GHz 4G.

In this study, 12 standard data sets from the UCI
machine learning repository (available from http://
www.ics. uci.edu/~mlearn/MLRepository.html) and two
real databases are evaluated. For classification, training
samples selected from the data set are used for training a
learner and the remaining are for testing. The training set in
all data sets is preliminarily processed by PCA to eliminate
the null space before FE. After a 1NN classifier is trained,
test samples are projected onto the reduced space. The
learner is then used for evaluating the accuracy. Notice that
for LDA and TR-LDA, there are at most c� 1 nonzero
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eigenvalues, and so an upper bound on the dimensionality
of the reduced space is c� 1 [12]. That is, LDA and TR-LDA
can only extract c� 1 meaningful features. We first test our
methods on 12 standard UCI data sets.

5.1 Classification on UCL Data Sets

In this study, 12 UCI data sets, i.e., Breast-cancer, SPECT,
Sonar, Monks1, Monks2, Monks3, Vote, Heart-statlog,
Synthetic-control, Hepatitis, Glass-identification, and Con-
traceptive-method-choice (CMC), are evaluated. In all the
simulations, fixed number of samples from each class is
selected from the data set for training. For each case, the
classification results are averaged over 20 random splits of
training/test samples. For each set, we report the mean test
accuracy and averaged running time (in seconds) of each
method under different reduced dimensionalities in Table 1.
We also elaborate the data set descriptions and settings in
Table 1. The l1-norm and mixed l2;0-norm are applied to
compute the sparse weights for SPP, which are, respec-
tively, called SPP1 and SPP2. From the results, we have the
following observations.

1. For classification, our GSCCA and o-GSCCA algo-
rithms deliver comparable or even better results
than other methods in most cases.

2. MCCA is always comparative with LDA due to the
fact that MCCA can be equivalent to LDA [3]. LDA

and TR-LDA outperforms our algorithms over
Monks2 data set. MMC and LDA work well on
Monks2, Synthetic-control and Hepatitis sets. SRDA
is also good in most cases.

3. Compared with LDA, MMC, MCCA, SRDA, and TR-
LDA, sparse SLPP, SPP1, and SPP2 can deliver
promising results in most cases and obtain compar-
able results to our methods on the SPECT, CMC,
Monks2, and Glass-identification data sets. PCA also
works well in some cases.

4. Considering the running time performance, results
of SPP2 and our methods are comparable to PCA,
LDA, MMC, MCCA, SLPP, SRDA, and TR-LDA
when the training sample size is relatively smaller.
When the number of training samples increases,
more running time is required in SPP2 and our
algorithms, because of the involvement of sparse
reconstruction. Compared with the l1-norm based
SPP1, SPP2 is more efficient.

These observations motivate us to design more efficient
approaches to speed-up the sparse reconstructive process
with the algorithmic effectiveness guaranteed in our
future studies.

5.2 Object Recognition on ETH80 Database

This study addresses an object categorization task on the
ETH80 database [37]. This database contains images of eight
big categories: apple, car, cow, cup, dog, horse, pear, and
tomato. Every category has 10 subcategories, each of which
contains 41 images from different viewpoints. Overall, the
database contains 3,280 images of 80 objects. In our studies,
we resize the images to 32� 32 pixels. Each pixel is
considered as an input variable and so each image
corresponds to a point in a 1,024D space. We show some
typical images in Fig. 2.

5.2.1 Visualization of the Transforming Matrix

We first examine the visual properties of the projection
matrices of our methods and compare them with PCA,
LDA, MMC, MCCA, TR-LDA, and SPP. In the following
simulations, group sparsity is always considered in SPP. In
this simulation, the cup category with 10 objects is tested
and each object corresponds to a single class. Then a 10-
class case is created. For each method, we randomly select
eight images from each object to learn the optimal
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Fig. 2. Typical sample images of the ETH-80 database.

Fig. 3. Visualization of the projection matrices of PCA, LDA, MMC, MCCA, TR-LDA, SPP and our algorithms on the cup object category.



subspaces. We illustrate the first 10 eigenvectors (or, eigen-
pictures) of the transforming matrix obtained by each
method. The eigen-pictures are then reshaped into a matrix
according to the original object image size, i.e., 32� 32. The
eigen-pictures gained in these methods are exhibited in
Fig. 3. For SPP and our methods, we also show the first
10 eigenvectors. The objects can then be projected onto the
sparse reconstructive discriminant subspaces spanned by
the eigenvectors. Observing from Fig. 3, we see that the
eigen-pictures of PCA look like cups, reflecting the
principal feature of images. It is also observed that
the eigen-pictures of LDA, MMC, MCCA, TR-LDA, SPP
and our methods are more noisy compared with PCA,
demonstrating that they are capable of capturing more
discriminant information about image details.

5.2.2 Object Recognition

This section focuses on representing and recognizing the
object images of ETH80 database. In this study, each of the
eight big categories is considered as a single class. So an
eight-class classification problem is created. In our simula-
tion, 200 images from each of the eight big categories are
selected for the experiments. Six simulation settings over
different training sample sizes are evaluated.

The validity of the algorithms is evaluated by varying
the training sample sizes and numbers of reduced dimen-
sions for image recognition. The results are illustrated in
Fig. 3. We compute the accuracies by averaging the test
results over 20 random splits of training/test samples. The
performance of our methods is also compared with PCA,
LDA, MMC, MCCA and TR-LDA, and SPP. Observing
from Fig. 3, we conclude that: 1) The performance of all
methods increase with the increasing numbers of training
samples and the reduced dimensions. 2) The unsupervised
PCA performs better over this data set and obtains the
recognition accuracies that are higher than those of the
supervised LDA, MMC, MCCA and TR-LDA. Also, PCA

obtains comparative results to SPP in some cases, which
may be attributed to the orthogonal projection vectors of
PCA. Due to the equivalence relationship between LDA
and MCCA, their accuracies are close and both are worse
than other methods. MMC can deliver comparable or even
higher accuracy to TR-LDA in each case. This is mainly
because MMC can be treated as a special case of the TR
framework [26]. 3) Based on characterizing data with the
sparsest representation, SPP outperforms LDA, MMC,
MCCA, and TR-LDA in each case. By considering the class
information of data into the SR, the performance is further
improved by our GSCCA and o-GSCCA, compared with
other algorithms.

We report the means of recognition accuracies and the
standard deviations (Std) in Table 2. The best records are
also described here. Seeing from Table 2, we find:

1. The performance superiorities, including the mean
and best results, of the algorithms keep consistent
with the results in Fig. 4.

2. The standard deviations actually reflect the smooth
degree of the curve’s trends. We can observe from
Table 2 that the standard deviation of each method is
comparable in each setting.

3. Our methods are capable of delivering better results
than other methods in each tested case.

4. The results also demonstrate that the delivered mean
and best accuracies of these algorithms also increase
as the training sample sizes increase.

5.3 Application to Natural Image Segmentation

We also prepare an interactive image segmentation task
using the benchmark Berkeley segmentation database [38].
This task focuses on extracting the foreground regions from
the natural images. Many efforts have been made, for
instance [39], [40], but image segmentation is still a
challenging problem. When dealing with interactive image
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TABLE 2
Performance Comparisons of the Algorithms on the ETH80 Object Database



segmentation, the most important issue is to collect the user
specified pixels about foreground and background. In this
simulation, eight natural images from the Berkeley database
are tested. Each extracted pixel from the images is
represented by a 5D vector ’ , i.e., ’ ¼ ½R;G;B; �; ��T,
where ðR;G;BÞ denotes the normalized color of the pixel
and ð�; �Þ denotes the spatial coordinate with image width
and height. After the pixels are extracted, the dimension-
alities are then reduced to 4 by PCA LDA, MMC, MCCA,
TR-LDA, SPP, GSCCA, and o-GSCCA. The 1NN classifier is
finally applied to determine the class labels of the pixels.
Based on the obtained class labels of pixels, the object image
regions are classified into foregrounds and backgrounds.

Fig. 5 exhibits the results. Row (a) shows the original
images. Row (b) shows the source images with the user
specified pixels, where blue and red colors indicate different
segments. Rows (c), (d), (e), (f), (g), (h), (i), and (j) illustrate
the segmentation result of each method, respectively. It can
be observed that: 1) Our GSCCA and o-GSCCA deliver
visually comparable and even better performance than other
methods in most cases, especially on determining the image
details and boundaries. We take the owl image as an
example, which needs to segment the owl and stick region
from the background. This segmentation task is relatively
difficult, as colors of foreground and background of the
images are similar. We show the segmented regions with the
original image resolution for comparison. We see clearly
that more details can be captured by our methods. 2) From
the results of the investigated cases, our GSCCA and o-
GSCCA methods are able to deliver better segmentation
results than LDA, MMC, MCCA, TR-LDA, and SPP,
especially on the first, second, third, fifth, sixth, seventh,
and eighth images. It can be clearly seen that more pixels
from the foreground and background of the images are
incorrectly classified by PCA, LDA, MMC, MCCA, TR-LDA,
and SPP in most cases. In contrast, our GSCCA and o-
GSCCA work better in classifying the pixels and are able to
deliver satisfactory results. 3) Compared with LDA, MMC,

MCCA, TR-LDA, and SPP, PCA delivers better segmenta-
tion results on the second, fifth, sixth, and eighth images.
The boundaries of foreground and background are correctly
segmented by PCA. LDA, and MCCA clearly detect the
boundaries on the fourth and seventh images. MMC
delivers satisfactory results on the fifth and eighth images.
In contrast, SPP is capable of representing the fifth, sixth,
and eighth images appropriately and effectively capture the
details in the images.

6 CONCLUDING REMARKS

This paper discusses a group sparse representation-based
discriminant feature extraction problem. An effective feature
extraction technique, termed group sparse canonical correla-
tion analysis (GSCCA), is developed. GSCCA is originally
proposed for handling binary-class case by computing two
sets of projection axes for representing two sets of variables.
In extracting the informative features, GSCCA relies on
preserving the desirable group sparse relationships of highly
correlated samples within a group while at the same time
maximizing the between-set covariance. Also, the locality
and sparsity of data can be automatically determined. By
defining one of the two sets to be a class label matrix, GSCCA
is naturally extended for multiclass feature extraction and
classification. We also establish the equivalence between
GSCCA and the least-squares problem. Comparison and
analyses between our method and other related techniques
demonstrate that our algorithm is more general. To
effectively calculate the projection axes, two solution
schemes based on eigen-decomposition and trace ratio
optimization are proposed. We also present kernelized
GSCCA for mining the nonlinear data structures by the
standard kernel trick.

This work mainly evaluates the proposed linear
methods and the validity is examined by visualization,
classification, object recognition, and image segmentation.
By visualizing UCI data set, BGSCCA delivers more
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Fig. 4. Recognition accuracy versus number of reduced dimensions on the ETH80 object recognition database.



separated embeddings of different clusters. For classifica-
tion and object recognition, most of our tested cases
indicate that the overall performance of our GSCCA is
comparative or even outperforms other related techniques.
From image segmentation, our GSCCA can represent the
pixels of images appropriately through detecting the
foreground and background regions effectively. In our
future work, investigating the approach of accelerating the
sparse representation process is required. Also, we must
admit that, in machine learning and pattern recognition
areas, determination of optimal reduced dimensions still
remains an open problem that needs further exploration.
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