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Events, Sample Space, 

and Random Variables

• Consider an experiment (e.g. tossing a coin, or rolling

a die).

• Sample space - set of all possible outcomes.

• Event - a subset of the sample space.

• example: experiment consisting of rolling a die once.

Sample space = {1, 2, 3, 4, 5, 6}

Possible events:

• {2, 3},

• {6},

• empty set {} (often denoted by Φ)
• the entire sample space {1, 2, 3, 4, 5, 6}
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Events are called mutually exclusive if 

their intersection is the empty set. 

A set of events is exhaustive if its union is equal to the 

sample space.

Example 1: tossing a coin only once 

The events {H} (Head) and {T} (Tail) are both 

mutually exclusive and exhaustive. 

What is the sample space (the set) of all possible

events in this case?

Example 2: rolling a die only once

The events {1}, {2}, {3}, {4}, {5}, and {6} are both 

mutually exclusive and exhaustive. 

The events {4}, {5}, and {6} are mutually exclusive but 

are not exhaustive. 

Moshe
Highlight
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A random variable is a real valued function defined on 

the sample space. 

This function X = X(ω) assigns a number to each 

outcome ω of the experiment.

Example: tossing a coin experiment

X = 1  for Head {H} 

X = 0 for Tail {T} 

Note that the function X is deterministic (not random), 

but the ω is unknown before the experiment is 

performed. Therefore X(ω) is called a random variable.
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Probability, Conditional Probability 

and Independence

Consider a sample space S. Let A be a subset of S. 

The probability of A is the function on S and all its 

subsets, denoted P(A) that satisfies the following 

three axioms:

3. The probability of the union of mutually exclusive 

events is equal to the sum of the probabilities of 

these events.
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One intuitive interpretation of probability of 

an event is its limiting relative frequency
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An example of a Histogram with 5 ranges 

(bins) and each range is 10 cm. 

In every range (bin), 10 ni values are added up. 

In this case, N = 93 people.
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Limiting Relative Frequency (continued)
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The Average Height
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Conditional Probability
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BA A∩B

S

“Given event B” is equivalent to “B becomes 

the sample space”.
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we obtain

Example: consider rolling a die and B={1,2,3} 

(B = outcome is 1 or 2 or 3), and A={1}, then

Now, since
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Events A and B are said to be independent
if and only if 

Equivalent definitions are: 

Independence between two events means that if one 

of them occurs, the probability of the other to occur is 

not affected. 

Homework: Show the equivalence between these 

three relationships.
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B1
B2 B3 B4

A
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Other names for Bayes’ Theorem: Bayes' law 

and Bayes' rule

Homework: Make sure you know how to derive the 

law of total probability and Bayes’ theorem. 
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6431 2 5

Rolling a die
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For the case of Rolling a die

2/6
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A random variable is called discrete if it takes at 

most a countable number of possible values. 

A continuous random variable takes an uncountable 

number of possible values. 

For discrete random variables  

the joint probability function is: 

and the probability function of a single discrete 

random variable is:
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Conditional Probability for 

Discrete Random Variables

Because of the above and since

we obtain

The implication is that the event {Y=y} is the new 

sample space and X has a legitimate distribution 

function in this new sample space.

is another version of the law of total probability.
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Example

You roll a fair 6-side die twice. X is a result of the 

first roll and Y is the result of the second roll. 

Define U = max(X,Y) and V = min(X,Y).

Find: P(U=5|V=3)
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Convolution
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Question

Explain the last equation of convolution 

using the Law of Total Probability.



© Zukerman 2014-2015

38

Now consider k random variables

The convolution of the k probability functions is:
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Some discrete random variables

2. Geometric

1. Bernoulli
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The number of  successes  in n independent Bernoulli trials

3. Binomial

Can be used to model users activity.

A user is active with probability p and non-active with 

probability 1-p.

X = i is the event where i users are active. 
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How to compute these values?

Use Recursion and start from values around λ.

Set arbitrary initial value then normalize.

4. Poisson 
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Poisson-Binomial Relationship
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Sum of two Poisson 

Random variables
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5. Pascal
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6. Discrete Uniform
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Continuous Random Variables and Distributions
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Example
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Please complete all steps in the following.
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Convolution of continuous random variables
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Convolution of k continuous random variables
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Some Continuous Random Variables

1. Uniform  (with parameters a,b)
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Inverse transform sampling
Using uniform (0,1) deviates to generate sequence 

of random deviates of any distribution
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1 2

Convolution of two independent 

uniform (0,1) random variables

1
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2. Exponential   (with parameter µ)
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Example

Show how to apply the Inverse transform sampling

to generate exponential deviates.

Guide
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Homework: 

Observe the following behavior of the 

Poisson probability function and provide 

explanation.  
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Poisson Probability function with λ= 1
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Poisson Probability function with λ= 10
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Poisson Probability function with λ= 100
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Poisson Probability function with λ= 1000
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Poisson Probability function with λ= 10000
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Preliminaries

A stochastic process is a collections of random variables.
Stochastic processes are used to model real-life processes (natural and
artificial) to understand their properties and their real-world effects.

The research in the field of stochastic processes has three facets:

Theory: mathematical explorations of stochastic processes models
that aim to better understand their properties.

Measurements: taken on the real process in order to identify its statistical
characteristics.

Modelling: fitting the measured statistical characteristics of the real
process with those of a model and development of new
models of stochastic processes that well match the real
process.

c© Moshe Zukerman Chapter 2: Stochastic Processes February 12, 2023 2 / 91



Preliminaries (cont’d)

We will provide background on basic theoretical aspects of stochastic
processes which form a basis for queueing theory and teletraffic models
discussed later.

Throughout the course, we will use mathematical/rigorous language as
well as engineering/somewhat intuitive language.

For a given index set T , a stochastic process {Xt , t ∈ T} is an indexed
collection of random variables.

They may or may not be identically distributed.

In many applications the index t is used to model time.

Accordingly, the random variable Xt for a given t can represent, for
example, the number of telephone calls that have arrived at an exchange
by time t.
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Preliminaries (cont’d)

If the index set T is countable, the stochastic process is called a
discrete-time process, or a time series.

Otherwise, the stochastic process is called a continuous-time process.

Considering our previous example, where the number of phone calls
arriving at an exchange by time t is modelled as a continuous-time process
{Xt , t ∈ T}, we can alternatively, use a discrete-time process to model,
essentially, the same thing.

This can be done by defining the discrete-time process
{Xn, n = 1, 2, 3, . . . }, where Xn is a random variable representing, for
example, the number of calls arriving within the nth minute.
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Introductory Comments and Preliminaries (cont’d)

A stochastic process {Xt , t ∈ T} is called discrete space stochastic
process if the random variables Xt are discrete, and it is called continuous
space stochastic process if it is continuous. We therefore have four types
of stochastic processes:

1 Discrete Time Discrete Space

2 Discrete Time Continuous Space

3 Continuous Time Discrete Space

4 Continuous Time Continuous Space.
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Strict Stationarity

A discrete-time stochastic process {Xn, n = 1, 2, 3, . . . } is strictly
stationary if for any subset of {Xn}, say,
{Xn(1), Xn(2), Xn(3), . . . , Xn(k)},
for any integer m, the joint probability function
P(Xn(1), Xn(2), Xn(3), . . . , Xn(k)),
is equal to the joint probability function
P(Xn(1)+m, Xn(2)+m, Xn(3)+m, . . . , Xn(k)+m).

In other words,
P(Xn(1)+m, Xn(2)+m, Xn(3)+m, . . . , Xn(k)+m)
is independent of m.

In this case, the probability structure of the process does not change with
time.
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Strict Stationarity (cont’d)

An equivalent definition for strict stationarity is applied also for a
continuous-time process.

Notice that for the process to be strictly stationary, the value of k is
unlimited as the joint probability should be independent of m for any
subset of {Xn, n = 1, 2, 3, . . .}.

If k is limited to some value k∗, we say that the process is stationary of
order k∗.
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Strict Stationarity (cont’d)

An equivalent definition applies to a continuous-time stochastic process.

A continuous-time stochastic process Xt is said to be strictly stationary if
its statistical properties do not change with a shift of the origin.

In other words, the process Xt statistically the same as the process Xt−d
for any value of d .

c© Moshe Zukerman Chapter 2: Stochastic Processes February 12, 2023 8 / 91



Gaussian Process

An important stochastic process is the Gaussian Process defined as a
process that has the property that the joint probability function (density)
associated with any set of times is multivariate Gaussian.

For simplicity we only consider single dimensional Gaussian distribution
and processes, but the definition of a Gaussian process applies to the more
general case of multivariate Gaussian.

The importance of the Gaussian process lies in its property to be an
accurate model for superposition of many independent processes.
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Gaussian Process (cont’d)

This makes the Gaussian process a useful model for heavily multiplexed
traffic which arrive at switches or routers deep in a major
telecommunications network.

Fortunately, the Gaussian process is not only useful, but it is also relatively
simple and amenable to analysis (but not as simple as the Poisson process
that we will learn later).

Notice that for a Gaussian distribution, all the joint moments of the
Gaussian random variables are fully determined by the joint first and
second order moments of the variables.

Therefore, if the first and second order moments do not change with time,
the Gaussian random variables themselves are stationary.
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Weak Stationarity

This implies that for a Gaussian process, stationarity of order two (also
called weak stationarity) implies strict stationarity.

For a time series {Xn, n = 1, 2, 3, . . . }, weak stationarity implies that,
for all n, E [Xn] is constant, denoted E [X ], independent of n. Namely, for
all n,

E [X ] = E [Xn].

Weak stationarity (because it is stationarity of order two) also implies that
the covariance between Xn and Xn+k , for any k , is independent of n, and
is only a function of k , denoted U(k). Namely, for all n,

U(k) = Cov [Xn,Xn+k ].

c© Moshe Zukerman Chapter 2: Stochastic Processes February 12, 2023 11 / 91



Autocovariance Function

Notice that, the case of k = 0, namely,

U(0) = Cov [Xn,Xn] = Var [Xn]

implies that the variance of Xn is also independent of n.

Also for all integer k ,
U(−k) = U(k)

because Cov [Xn,Xn+k ] = Cov [Xn+k ,Xn] = Cov [Xn,Xn−k ].

The function U(k), k = 0, 1, 2, . . ., is called the autocovariance
function.

The value of the autocovariance function at k , U(k), is also called the
autocovariance of lag k .
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Autocorrelation Function

The autocorrelation function at lag k , denoted C (k), is the normalized
version of the autocovariance function, and since by weak stationarity, for
all i and j , Var [Xj ] = Var [Xi ], it is given by:

C (k) =
U(k)

Var [Xn]
.

Autocorrelation function (as well as correlation) is bounded between -1
and 1. In some areas of EE other definitions of autocorrelation functions
(as well as of correlation) exist.

High values of autocorrelation function (close to 1) indicate strong
dependencies. Equivalently, low (positive) values of autocovariance
function indicate weak dependencies.

High negative values of autocovariance function and high negative values
of autocorrelation function (close to -1) indicate strong negative
dependencies.
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Ergodicity

A stochastic process is called ergodic if every realization contains
sufficient information on the probabilistic structure of the process.

For example, let us consider a process which can be in either one of two
realization: either Xn = 1 for all n, or Xn = 0 for all n.

Assume that each one of these two realizations occur with probability 0.5.

If we observe any one of these realizations, regardless of the duration of
the observations, we shall never conclude that E [A] = 0.5. We shall only
have the estimations of either E [A] = 0 or E [A] = 1, depending on which
realization we happen to observe. Such a process is not ergodic.
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Statistics of a Stationary and Ergodic Process

Assuming {Xn, n = 1, 2, 3, . . . } is ergodic and stationary, and we
observe m observations of this {Xn} process, denoted by
{Ân, n = 1, 2, 3, . . . , m}, then the mean of the process E [A] can be
estimated by

Ê [A] =
1

m

m∑
n=1

Ân,

and the autocovariance function U(k) of the process can be estimated by

Û(k) =
1

m − k

m∑
n=k+1

(Ân−k − E [A])(Ân − E [A]).
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Two Orderly and Memoryless Point Processes

We now consider a very special class of stochastic processes called point
processes that also possess two properties: orderliness and
memorylessness.

After providing, somewhat intuitive, definitions of these concepts, we will
discuss two processes that belong to this special class: one is discrete-time
- called the Bernoulli process and the other is continuous-time - called
the Poisson process.

We consider here a physical interpretation, where a point process is a
sequence of events which we call arrivals occurring at random in points of
time ti , i = 1, 2, . . . , ti+1 > ti , or i = . . . , −2,−1, 0, 1, 2, . . ., ti+1 > ti .

The index set, namely, the time, can be continuous or discrete.
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Two Orderly and Memoryless Point Processes (cont’d)

We call our events arrivals to relate is to the context of queueing theory,
where a point process typically corresponds to points of arrivals, i.e., ti is
the time of the ith arrival that joints a queue.

A point process can be defined by its counting process {N(t), t ≥ 0},
where N(t) is the number of arrivals occurred within [0, t).

A counting process {N(t)} has the following properties:

1 N(t) ≥ 0,

2 N(t) is integer,

3 if s > t, then N(s) ≥ N(t) and N(s)− N(t) is the number of
occurrences within (t, s].

c© Moshe Zukerman Chapter 2: Stochastic Processes February 12, 2023 17 / 91



Two Orderly and Memoryless Point Processes (cont’d)

Note that N(t) is not an independent process because for example, if
t2 > t1 then N(t2) is dependent on the number of arrivals in [0, t1),
namely, N(t1).

Another way to define a point process is by the stochastic process of the
inter-arrival times ∆i where ∆i = ti+1 − ti .

Orderliness for a point process means that the probability that two or
more arrivals happen at once is negligible. Mathematically, for a
continuous-time counting process to be orderly, it should satisfy:

lim
∆t→0

P(N(t + ∆t)− N(t) > 1 | N(t + ∆t)− N(t) ≥ 1) = 0.

A stochastic process is memoryless if at any point in time, the future
evolution of the process is statistically independent of its past.
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Bernoulli Process

The Bernoulli process is a discrete-time stochastic process made up of a
sequence of IID Bernoulli distributed random variables
{Xi , i = 0, 1, 2, 3, . . .} where for all i , P(Xi = 1) = p and
P(Xi = 0) = 1− p. In other words, we divide time into consecutive equal
time slots.

Then, for each time-slot i , we conduct an independent Bernoulli
experiment. If Xi = 1, we say that there was an arrival at time-slot i .

Otherwise, if Xi = 0, we say that there was no arrival at time-slot i .

The Bernoulli process is both orderly and memoryless. It is orderly
because, by definition, no more than one arrival can occur at any time-slot
as the Bernoulli random variable takes values of more than one with
probability zero.
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Bernoulli Process (cont’d)

It is also memoryless because the Bernoulli trials are independent, so at
any discrete point in time n, the future evolution of the process is
independent of its past.

The counting process for the Bernoulli process is another discrete-time
stochastic process {N(n), n ≥ 0} which is a sequence of Binomial random
variables N(n) representing the total number of arrivals occurring within
the first n time-slots.

Notice that since we start from slot 0, N(n) does not include slot n in the
counting.

That is, we have

P[N(n) = i ] =

(
n

i

)
pi (1− p)n−i i = 0, 1, 2, . . . , n.
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Bernoulli Process (cont’d)

The inter-arrival times for Bernoulli process are memoryless, IID, and
geometrically distributed, so we can drop the index i of ∆i , designating
the i inter-arrival time, and consider the probability function of the
random variable ∆ representing any inter-arrival time. Its probability
function is given by

P(∆ = i) = p(1− p)i−1 i = 1, 2, . . . .

Another important question is what is the probability distribution of the
time it takes until the ith arrival.
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Bernoulli Process (cont’d)

This time is a sum of i inter-arrival times which is a sum of i geometric
random variables which we already know has a Pascal distribution with
parameters p and i , so we have

P[the ith arrival occurs in time slot n] =

=

(
n − 1

i − 1

)
pi (1− p)n−i i = i , i + 1, i + 2, . . . .
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Bernoulli Process (cont’d)

Notice that on-off sources could be modeled as Bernoulli processes where
the on-periods are represented by consecutive successes of Bernoulli trials
and the off-periods by failures.

In this case, for each on-off process, the length of the on- and the
off-periods are both geometrically distributed.

Accordingly, the superposition of N Bernoulli processes with parameter p
is another discrete-time stochastic process where the number of arrivals
during the different slots are IID and binomial distributed with parameters
N and p.

Homework: Prove the last statement.
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Bernoulli Process (cont’d)

Another important concept is merging of processes which is different from
superposition.

Unlike superposition in which we are interested in the total number of
arrivals, in merging we are only interested to know if there was at least one
arrival within a time-slot without any interest of how many arrivals there
were in total.

This is of interest in sensor network application when we want to know if
any of the sensors sounds an alarm and we are not interested in how many
sensors sound an alarm.
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Bernoulli Process (cont’d)

Consider an example of N sensors that are spread around a country to
detect certain events. Assume that the ith sensor is active following a
Bernoulli process with parameter pi in any of the time slots. Assume
independence between the sensors and between different time slots.

The probability that an alarm is sound in a given time-slot is the
probability that at least one of the sensors is active which is given by

Pa = 1−
N∏
i=1

(1− pi ).

Now, considering the independence of the processes, we can realize that
the alarms follow a Bernoulli process with parameter Pa.

This Bernoulli process with parameter Pa is the merged process.

c© Moshe Zukerman Chapter 2: Stochastic Processes February 12, 2023 25 / 91



Bernoulli Process (cont’d)

Another concept that applies to traffic in networks is splitting.

Consider a Bernoulli process with parameter p and then color each arrival,
independently of all other arrivals, in red with probability q and in blue
with probability 1− q.

Then, in each time-slot we have a red arrival with probability pq and a
blue one with probability p(1− q).

Therefore, the red arrivals follow a Bernoulli process with parameter pq
and the blue arrivals follow a Bernoulli process with parameter p(1− q).
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Poisson process

The Poisson process is a continuous-time point process which is also
memoryless and orderly.

It applies to many cases where a certain event occurs at different points in
time.

Such occurrences of the events could be, for example, arrivals of phone
call requests at a telephone exchange. We will use many terms to call such
occurrences, including “occurrences”, “events”, “arrivals” and
“points”.

A Poisson process can be described by its counting process
{N(t), t ≥ 0} representing the total number of occurrences by time t.
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Poisson process (cont’d)

A counting process {N(t)} is defined as a Poisson process with rate λ > 0
if it satisfies the following three conditions.

1 N(0) = 0.

2 The number of occurrences in two non-overlapping intervals are
independent. That is, for any s > t > u > v > 0, the random
variable N(s)− N(t), and the random variable N(u)− N(v) are
independent. This means that the Poisson process has what is called
independent increments.

3 The number of occurrences in an interval of length t has a Poisson
distribution with mean λt.

These three conditions will be henceforth called the three Poisson
process conditions.
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Poisson process (cont’d)

By definition, the Poisson process N(t) has what is called stationary
increments, that is, for any t2 > t1, the random variable N(t2)− N(t1),
and the random variable N(t2 + u)−N(t1 + u) have the same distribution
for any u > 0.

In both cases, the distribution is Poisson with parameter λ(t2 − t1).

Intuitively, if we choose the time interval ∆ = t2 − t1 to be arbitrarily
small (almost a “point” in time), then the probability of having an
occurrence there is the same regardless of where the “point” is.

Loosely speaking, every point in time has the same chance of having an
occurrence. Therefore, occurrences are equally likely to happen at all
times. This property is also called time-homogeneity.
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More Properties and Characteristic of the Poisson Process

The Poisson process is a pure-chance point process on the real line.

The points on the real line (that normally represents time) are events
(e.g. call arrivals). Events are random and independent of each other.

The parameter λ is the rate of the Poisson process.

The time between consecutive events is exponentially distributed with
parameter λ.

The mean time between consecutive events is equal to 1
λ .

The number of events in an interval time T is Poisson distributed
with parameter λT .

The mean number of events in an interval time T is equal to λT .

The variance of the number of events in an interval time T is also
equal to λT .

The number of events in disjoint intervals are independent random
variables, so the number of future events is independent of the past.
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Homework

Generate a Poisson process with rate λ = 1 for a period of time of length
T ≥ 10, 000.

Pick a point in time from a uniform distribution within the interval
[1,10000].

Record the length of the interval (between two consecutive Poisson
occurrences) that includes the chosen point in time.

Repeat the experiment 1000 times.

Compute the average length of the intervals you recorded.

Explain your result.

Share your program, result and explanation on Group Learning.
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Memorylessness Property of Poisson Process

By the memorylessness (memoryless) property of the exponential
distribution, the time until the next occurrence is always exponentially
distributed with the same parameter as that of the original distribution
and therefore, at any point in time, not necessarily at points of
occurrences, the future evolution of the Poisson process is independent of
the past, and is always probabilistically the same.

The Poisson process is therefore memoryless.

Another explanation for the independence of the past can be explained by
the Poisson process property of independent increments.
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Superposition of Poisson Processes

Consider two Poisson processes: one with parameter λ1 and the other with
parameter λ2.

The superposition of these two processes is a new point process that
comprises all the points of both processes.

This superposition is a Poisson process with rate λ = λ1 + λ2.
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Superposition of Poisson Processes (cont’d)

Notice that for any time interval T , the number of events in the process,
which is the superposition of the two processes, will be the sum of the
number of events occured in the two processes. Therefore, it is Poisson
distributed with parameter λ1T + λ2T = λT .

Notice also that the time between two consecutive events in the process,
which is the superposition of the two processes, will be the minimum of
two exponential random variables: one with parameter λ1 and the other
with parameter λ2. We know that this minimum is exponentially
distributed with parameter λ = λ1 + λ2.

In general: the superposition of k Poisson processes with parameters
λ1, λ2, . . . , λk , is a Poisson process with rate λ = λ1 + λ2, . . . ,+λk .

Again, show it by induction.
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Homework

Consider superposition of two Poisson processes, namely, X (t) is a
superposition of X1(t) and X2(t) where Xi (t) is a Poisson process with
parameter λi , i = 1, 2.

What is the probability that the next event that occurs will be from X1(t)
(or from X2(t)).

Guide: This is equivalent to the question of having say two exponential
random variables T1 and T2 with parameters λ1 and λ2, respectively, and
we are interested in the probability of T1 < T2.

P(T1 < T2) =
λ1

λ1 + λ2
.
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Splitting a Poisson Process

In many networking applications, it is of interest to study the effect of
splitting of traffic streams.

We will consider two types of splitting: random splitting and regular
splitting.

Consider an arrival (counting) process X (t), t ≥ 0, of packets to a certain
switch called Switch X.

This packet arrival process is assumed to follow a Poisson process with
parameter λ.

Some of these packets are then forwarded to Switch A and the others to
Switch B.

The counting processes of packets forwarded to A and B are designated
XA(t) and XB(t), t ≥ 0, respectively.
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Splitting a Poisson Process (cont.)

Under random splitting, every packet that arrives at Switch X is
forwarded to A with probability p and to B with probability 1− p
independently of any other event associated with other packets.

In this case, the process XA(t), t ≥ 0 follows a Poisson process with
parameter pλ and the process XB(t), t ≥ 0 follows a Poisson process with
parameter (1− p)λ.

We assume that the forwarding is done instantly upon arrival at Switch X,
so

X (t) = XA(t) + XB(t).

One simple way to show it is to show that the inter-arrival times of XA(t)
(and the same goes for XB(t)) are IID exponentially distributed random
variable. Recall that a geometric sum of exponential random variables is
an exponential random variable.
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Splitting a Poisson Process (cont.)

Regular Splitting

If the splitting is not random, but regular, for example, the first packet
that arrives at Switch X is forwarded to A the second to B, the third to A,
the fourth to B, etc.

In this case, the packet stream from X to A (the X-A Process) will not
follow a Poisson.

It will follow a stochastic process which is a point process where the
inter-arrival times are Erlang distributed with parameters λ and 2.

Homework: Explain why the inter-arrival times are Erlang distributed
with parameters λ and 2.
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Poisson Sampling

The properties of the Poisson process, namely, independence and
time-homogeneity, make the Poisson process, also known as pure chance
process, able to randomly inspect other continuous-time stochastic
processes in a way that the sample it provides gives us enough information
on what is called time-averages.

In other words, its inspections are not biased.

Examples of time-averages are the proportion of time a process X (t) is in
state i , i.e., the proportion of time during which X (t) = i , or the overall
mean of the process defined by

E [X (t)] =

∫ T
0 X (t)dt

T

for an arbitrarily large T .
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Poisson Sampling (cont’d)

We are interested in generating exactly k sample points that follow a
Poisson process during time T . How can it be done efficiently?

The pure chance nature of the Poisson process implies that at any point in
time (or more precisely, for any arbitrarily small interval of length ∆t), the
probability of an occurrence is the same, and it is independent of any
other occurrences.

This property gives rise to the following interesting and useful property.

If we generate k uniform independent random deviates within time
interval [0, T ] and we order them in increasing order of their values, the
resulting point process is statistically equivalent to a Poisson process that
has exactly k occurrences during interval [0, T ].

This gives rise to an efficient way to generate exactly k sample points that
follow a Poisson process during time T .
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Markov Modulated Poisson Process (MMPP)

The stochastic process called Markov modulated Poisson process
(MMPP) is a point process that behaves as a Poisson process with
parameter λi for a period of time that is exponentially distributed with
parameter δi .

Then, it moves to mode j where it behaves like a Poisson process with
parameter λj for a period of time that is exponentially distributed with
parameter δj .

The parameters δi s are called mode duration parameters.

In general, the MMPP can have an arbitrary number of modes, so it
requires a transition probability matrix as an additional set of parameters
to specify the probability that it moves to mode j given that it is in mode i .

However, we are mostly interested in the simplest case of MMPP – the
two mode MMPP denoted MMPP(2) and defined by only four parameters:
λ0, λ1, δ0, and δ1.

c© Moshe Zukerman Chapter 2: Stochastic Processes February 12, 2023 41 / 91



MMPP (cont’d)

The MMPP(2) behaves as a Poisson process with parameter λ0 for a
period of time that is exponentially distributed with mode duration
parameter δ0.

Next, it moves to mode 1 where it behaves like a Poisson process with rate
λ1 for a period of time that is exponentially distributed with parameter δ1.

Then, it switches back to mode 0, etc. alternating between the two modes
0 and 1.
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Interrupted Poisson Process (IPP)

A special case of MMPP(2), where λ0 = 0, is called the Interrupted
Poisson Process (IPP).

The IPP is characterized by three parameters λ, δ0, and δ1.

It behaves as a Poisson process with parameter λ > 0 during an active
mode for a period of time that is exponentially distributed with parameter
δ1.

Next, it is interrupted with no arrivals at all during a nonactive mode for a
period of time that is exponentially distributed with parameter δ0.

Then, it switches back to an active mode, etc. alternating between the
two modes active and nonactive.
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Markov Chains

Markov chains are certain discrete space stochastic processes which are
amenable for analysis and hence are very popular for analysis, traffic
characterization and modeling of queueing and telecommunications
networks and systems. They can be classified into two groups:

1 discrete-time Markov chains

2 continuous-time Markov chains.
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Discrete-time Markov Chains

A discrete-time Markov chain is a discrete-time stochastic process

{Xn, n = 0, 1, 2, . . .}

with the Markov property; namely, that at any point in time n, the future
evolution of the process is dependent only on the state of the process at
time n, and is independent of the past evolution of the process. The state
of the process can be a scalar or a vector.

For simplicity, we will mainly discuss the case where the state of the
process is a scalar.

The discrete-time Markov chain {Xn, } at any point in time may take
many possible values.
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Discrete-time Markov Chains (cont’d)

The set of these possible values is finite or countable and it is called the
state space of the Markov chain, denoted by Θ.

A time-homogeneous Markov chain is a process in which

P(Xn+1 = i | Xn = j) = P(Xn = i | Xn−1 = j) for n = 0, 1, 2, . . . ,

i , j ∈ Θ.

Henceforth, for simplicity of exposition, we consider that all the states are
elements of Θ and we do not explicitly write it.
We will also only consider Markov chains which are time-homogeneous.
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Discrete-time Markov Chains (cont’d)

A discrete-time time-homogeneous Markov chain is characterized by the
property that, for any n, given Xn, the distribution of Xn+1 is fully defined
regardless of states that occur before time n.

That is,

P(Xn+1 = j | Xn = i)

= P(Xn+1 = j | Xn = i ,Xn−1 = in−1,Xn−2 = in−2, . . .).
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Discrete-time Markov Chains (cont’d)

A Markov chain is characterized by the so-called Transition Probability
Matrix denoted P which is a matrix of one step transition probabilities
Pij , namely,

P = [Pij ]

where
Pij = P(Xn+1 = j | Xn = i) for all n.

We can observe in the latter that the event {Xn+1 = j} depends only on
the state of the process at Xn and the transition probability matrix P.

Since the Pijs are probabilities and since when you transit out of state i ,
you must enter some state, all the entries in P are non-negatives, less or
equal to 1, and the sum of entries in each row of P must add up to 1.
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Discrete-time Markov Chains (cont’d)

Example:
Consider the following Transition probability matrix:

P =

0.2 0.1 0.7
0.4 0.3 0.3
0.2 0.2 0.6

 .
Assume Θ = {0, 1, 2}.

Then, P0,0 = 0.2, P0,1 = 0.1, P0,2 = 0.7, P1,0 = 0.4,P1,1 = 0.3,
P1,2 = 0.3, P2,0 = 0.2, P2,1 = 0.2, and P2,2 = 0.6.

In this case, for example:

P1,2 = P(Xn+1 = 2 | Xn = 1) = 0.3 for all n,

or
P2,1 = P(Xn+1 = 1 | Xn = 2) = 0.2 for all n.
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Discrete-time Markov Chains (cont’d)

A state is called positive recurrent if the mean time (number of steps) to
return to the state is finite (this implies also that the probability to return
to the state in finite number of steps is positive).

A Markov chain is said to be stable if all the states in its state space are
positive recurrent.

A state i is said to be accessible from another state j if there is a positive
probability for the Markov chain to reach state i at some time in the
future if it is now in state j .

A Markov chain is said to be irreducible if all the states in its state space
are accessible from each other.
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Discrete-time Markov Chains (cont’d)

State i is said to be aperiodic if Pi ,i > 0.

A Markov chain is said to be aperiodic if all the states in its state space
are aperiodic.

We denote by πj , j = 0, 1, 2, . . . , the components of the vector Π. The
πj is the steady-state probability of the Markov chain to be at state j .

This means that if we simulate a Markov chain for sufficiently long time to
be in steady state and we pick a random time, the probability that the
Markov chain is in state j is πj .
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Discrete-time Markov Chains (cont’d)

For an irreducible, aperiodic and stable Markov chain, the steady-state
probabilities can be obtained by solving the following steady-state
equations:

πj =
∞∑
i=0

πiPij for all j ,

or in matrix notation
Π = ΠP,

and also the normalizing equation

∞∑
j=0

πj = 1.

When the state space Θ is finite, one of the steady state equation is
redundant and is replaced by the normalizing equation.
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Discrete-time Markov Chains (cont’d)

In many real life applications, the state of the system either stays
unchanged or sometimes increases by one, and at other times decreases by
one, and no other transitions are possible.

Such a discrete-time Markov chain {Xn} is called in various ways, e.g.,
Discrete-Time Birth-Death Chains.

We use the term birth-and-death process for both the discrete and
continuous time versions.

In this case, Pij = 0 if |i − j | > 1 and Pij > 0 if |i − j | ≤ 1, for i ≥ 0 and
j ≥ 0.

By the first equation of the steady state equations, we obtain:

π0P01 = π1P10.

Substituting the latter in the second equation of the steady state
equations, we obtain

π1P12 = π2P21.
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Discrete-time Markov Chains (cont’d)

Homework: Derive the last two equations.

Solution:

π0 = π0P00 + π1P10

π0(1− P00) = π1P10

Since P00 + P01 = 1, we obtain

π0P01 = π1P10
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Discrete-time Markov Chains (cont’d)

Next,

π1 = π0P01 + π1P11 + π2P21.

From the last two equations we obtain

π1 = π1(P11 + P10) + π2P21

π1(1− P11 − P10) = π2P21

and since P10 + P11 + P12 = 1, we obtain

π1P12 = π2P21.

This completes the derivation of the two equations.
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Discrete-time Markov Chains (cont’d)

Continuing in the same way, we obtain

πiPi ,i+1 = πi+1Pi+1,i , i = 0, 1, 2, . . . .

These equations are called detailed balance equations. They together
with the normalizing equation

∞∑
i=0

πi = 1

constitute a set of steady-state equations for the steady-state probabilities.

They are simpler than the original equations.

Homework: Solve the detailed balance equations together with the
normalizing equations for the πi , i = 0, 1, 2, . . . .
Guide: Recursively, write all πi , i = 0, 1, 2, 3, . . . in terms of π0. Then use
the normalizing equation and isolate π0.
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Discrete-time Markov Chains (cont’d)

Discrete-time Multi-dimensional Markov Chains

So far, we discussed single dimensional Markov chains.

If the state space is made of finite vectors instead of scalars, we can easily
convert them to scalars and proceed with the above described approach.

For example, if the state-space is (0,0) (0,1) (1,0) (1,1) we can simply
change the names of the states to 0,1,2,3 by assigning the values 0, 1, 2
and 3 to the states (0,0), (0,1), (1,0) and (1,1), respectively.

All we need to do is to consider a 4× 4 transition probability matrix as if
we have a single dimension Markov chain.

c© Moshe Zukerman Chapter 2: Stochastic Processes February 12, 2023 57 / 91



Continuous-time Markov Chains

A continuous-time Markov chain is a continuous-time stochastic process
{Xt , t ≥ 0}.

At any point in time t > 0, Xt describes the state of the process which is
discrete.

We will consider only continuous-time Markov chain where Xt takes values
that are nonnegative integers.

The time between changes in the state of the process is exponentially
distributed.

In other words, the process stays constant for an exponential time duration
before changing to another state.
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Continuous-time Markov Chains (cont’d)

In general, a continuous-time Markov chain {Xt , t ≥ 0} is defined by the
property that for all real numbers s ≥ 0, t ≥ 0 and v ≥ 0, and integers
i ≥ 0, j ≥ 0 and k ≥ 0,

P(Xt+s = j | Xt = i ,Xv = kv , v ≤ t) = P(Xt+s = j | Xt = i).

That is, the probability distribution of the future values of the process Xt ,
represented by Xt+s , given the present value of Xt and the past values of
Xt denoted Xv , is independent of the past and depends only on the
present.
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Continuous-time Markov Chains (cont’d)

A general continuous-time Markov chain can also be defined as a
continuous-time discrete space stochastic process with the following
properties.

1 Each time the process enters state i , i ≥ 0, it stays at that state for
an amount of time which is exponentially distributed with parameter
δi before making a transition into a different state.

2 When the process leaves state i , it enters state j , j ≥ 0, with
probability denoted Pij . The set of Pijs must satisfy the following:

(1) Pii = 0 for all i

(2)
∑

j Pij = 1.
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Continuous-time Markov Chains (cont’d)

Two examples of a continuous-time Markov chain

Example 1: A Poisson process with rate λ.

The state at time t, {Xt , t ≥ 0} can be the number of occurrences by
time t which is the counting process N(t).

In this example of the Poisson counting process Xt = N(t), t ≥ 0 increases
by one after every exponential time duration with parameter λ.
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Continuous-time Markov Chains (cont’d)

Example 2: The so-called pure birth process {Xt , t ≥ 0}. It is a
generalization of the counting Poisson process.

Again {Xt , t ≥ 0} increases by one every exponential amount of time but
here, instead of having a fixed parameter λ for each of these exponential
intervals, this parameter depends of the state of the process and it is
denoted δi .

In other words, when Xt = i , the time until the next occurrence in which
{Xt , t ≥ 0} increases from i to i + 1 is exponentially distributed with
parameter δi .

If we set δi = λ for all i , we have the Poisson counting process.
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Continuous-time Markov Chains (cont’d)

As in the case of the discrete-time Markov chain, in many real-life
applications, the state of the system in one point in time sometimes
increases by one, and at other times decreases by one, but never increase
or decrease by more than one at one time instance.

Such a continuous-time Markov chain {Xt , t ≥ 0}, as its discrete-time
counterpart, is called a birth-and-death process.

In such a process, the time between occurrences in state i is exponentially
distributed, with parameter δi , and at any point of occurrence, the process
increases by one (from its previous value i to i + 1) with probability υi and
decreases by one (from i to i − 1) with probability ϑi = 1− υi .
The transitions from i to i + 1 are called births and the transitions from i
to i − 1 are called deaths.

Recall that the mean time between occurrences, when in state i , is 1/δi .
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Continuous-time Markov Chains (cont’d)

Hence, the birth rate in state i , denoted bi , is given by

bi =

{
δiυi for i ≥ 1
δi for i = 0,

and the death rate (di ) is given by

di =

{
δiϑi for i ≥ 1
0 for i = 0.

Summing up these two equations gives the intuitive result that the total
rate at state i is equal to the sum of the birth-and-death rates.

Namely,
δi = bi + di , for i ≥ 0,

and therefore the mean time between occurrences is

1

δi
=

1

bi + di
, for i ≥ 0.
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Continuous-time Markov Chains (cont’d)

Birth-and-death processes apply to queueing systems where customers
arrive one at a time and depart one at a time.

Consider for example a birth-and-death process with the death rate higher
than the birth rate.

Such a process could model, for example, a stable single-server queueing
system.

Homework: Show the following:

ϑi =
di

bi + di
, for i ≥ 0

and

υi =
bi

bi + di
, for i ≥ 0.
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Continuous-time Markov Chains (cont’d)

First Passage Time

An important problem that has applications in many fields, such as biology,
finance and engineering, is how to derive the distribution or moments of
the time it takes for the process to transit from state i to state j .

In other words, given that the process is in state i find the distribution of a
random variable representing the time it takes to enter state j for the first
time.

This random variable is called the first passage time from i to j.

Let us derive the mean of the first passage time from i to j in a
birth-and-death process for the case i < j .
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Continuous-time Markov Chains (cont’d)

To solve this problem we start with a simpler one. Let Ui be the mean
passage time to go from i to i + 1. Then

U0 =
1

b0
.

and

Ui =
1

δi
+ ϑi [Ui−1 + Ui ], for i ≥ 1.
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Continuous-time Markov Chains (cont’d)

Explanation:

Notice that Ui−1 is the mean passage time to go from i − 1 to i , so
Ui−1 + Ui is the mean passage time to go from i − 1 to i + 1. Notice that
Ui the mean passage time to go from i to i + 1 is equal to the mean time
the process stays in state i (namely 1/δi ), plus the probability to move
from i to i − 1, times the mean passage time to go from i − 1 to i + 1.

Notice that the probability of moving from i to i + 1 is not considered
because if the process moves from i to i + 1 when it completes its sojourn
in state i then the process reaches the target (state i + 1), so no further
time needs to be considered.
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Continuous-time Markov Chains (cont’d)

Therefore,

Ui =
1

bi + di
+

di
bi + di

[Ui−1 + Ui ], i ≥ 1,

or

Ui =
1

bi
+

di
bi
Ui−1, i ≥ 1.

Now we have a recursion by which we can obtain U0,U1,U2, . . ., and the
mean first passage time between i and j , for j > i , is given by the sum

j−1∑
k=i

Uk .

Homework: Let bi = λ for i ≥ 0 and di = µ for all i for i ≥ 1, derive a
closed form expression for Ui .

c© Moshe Zukerman Chapter 2: Stochastic Processes February 12, 2023 69 / 91



Continuous-time Markov Chains (cont’d)

As in the case of the discrete-time Markov chain, define a continuous-time
Markov chain to be called irreducible if there is a positive probability for
any state to reach every state.

We define a state in a continuous-time Markov chain to be called positive
recurrent, if the process visits and then leaves that state, the random
variable that represents the time it returns to that state has finite mean.

As for discrete-time Markov chains, a continuous-time Markov chain is
said to be stable if all its states are positive recurrent.

Henceforth we only consider continuous-time Markov chains that are
irreducible, aperiodic and stable.
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Continuous-time Markov Chains (cont’d)

As for discrete-time Markov chains, πj is the steady-state probability of the
continuous-time Markov chain to be at state j .

We shall now describe how the steady-state probabilities πj can be
obtained.

Again we define Pij , i 6= j as the probability that given that the process
now is in state i , it will reach state j next. Then we can define the matrix
P = [Pij ] (with zeros in the diagonal).
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Continuous-time Markov Chains (cont’d)

We now construct the matrix Q which is called the infinitesimal
generator of the continuous-time Markov chain. The matrix Q is a matrix
of one step infinitesimal rates Qij defined by

Qij = δiPij for i 6= j (1)

and
Qii = −

∑
j 6=i

Qij . (2)

Remarks:

The state-space can be finite or infinite and hence the matrices P
and Q can also be finite or infinite.

Qij is the product of the rate to leave state i and the probability of
transition to state j from state i which is the rate of transitions from
i to j .
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Continuous-time Markov Chains (cont’d)

To obtain the steady-state probabilities πjs, we solve the following set of
steady-state equations:

0 =
∑
i

πiQij for all j

and the normalization equation that ensures that the sum of the
steady-state probabilities is equal to one is∑

j

πj = 1.

Denoting Π = [π0, π1, π2, . . .], the steady state equations above can be
written as

0 = ΠQ.
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Continuous-time Markov Chains (cont’d)

The quantity πiQij , i 6= j which is the steady-state probability of being in
state i times the infinitesimal rate of a transition from state i to state j is
called the probability flux from state i to state j .

The steady state equations guaranty that the total probability flux from all
states into any given state j is equal to the total probability flux out of
state j to all other states. These steady state equations are called global
balance equations.

The j column in the Q matrix corresponds to the jth global balance
equation, where the infinitesimal rates Qij for i 6= j represent rates into
state j and Qjj is the total (negative) rate out of state j as it is equal to
the negative sum of the other elements in the jth row.
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Continuous-time Markov Chains (cont’d)

To explain the equality of the global balance equations, consider a long
period of time L. Assuming the process returns to all states infinitely many
times, during a long time period L, the number of times the process moves
into state j is equal (in the limit L→∞) to the number of times the
process moves out of state j .

Similar to the case of discrete-time Markov chains, the set of steady-state
equations is dependent and one of the equations so it is redundant in the
finite state space case, and it is replaced by the normalization equation.

For continuous-time birth-and-death processes, Qij = 0 for |i − j | > 1. As
in the discrete-time case, under this special condition, the global balance
equations can be simplified to the detailed balance equations.
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Continuous-time Markov Chains (cont’d)

We start with the first steady state equation and using the condition
Qij = 0 for |i − j | > 1, we obtain

π0Q01 = π1Q10

The second equation is

π1[Q10 + Q12] = π0Q01 + π2Q21.

Then we obtain
π1Q12 = π2Q21.

In a similar way, by repeating the process, we obtain the following detailed
balance equations.

πiQi ,i+1 = πi+1Qi+1,i i = 0, 1, 2, . . . .
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Continuous-time Markov Chains (cont’d)

Continuous-time Multi-dimensional Markov Chains

The extension discussed earlier regarding multi-dimensional discrete-time
Markov chains applies also to the case of continuous-time Markov chains.

If the state-space is made of finite vectors instead of scalars, as discussed,
there is a one-to-one correspondence between vectors and scalars, so a
multi-dimensional continuous-time Markov chain can be converted to a
single-dimension continuous-time Markov chain and we proceed with the
above described approach that applies to the single dimension.

Note that the above described MMPP is a Multi-Dimensional continuous
time Markov chain.
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Continuous-time Markov Chains (cont’d)

Solutions by Successive Substitutions

When the matrix Q is large but finite, there is a need to solve a set of
steady-state equations efficiently.

An efficient way that normally works well for solving such equations is to
use a method of successive substitutions which is applicable to both
discrete-time and continuous-time Markov chains, but in our description of
the method we consider for example a finite set of steady-state equations
of a continues-time Markov chain of the form

0 = ΠQ

where Π = [π0, π1, π2, π3, . . . , πk ] and Q is the infinitesimal generator
(k + 1)× (k + 1) matrix of the continuous time Markov chain, and we also
have the normalization equation.
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Continuous-time Markov Chains (cont’d)

The method can be described as follows.

First, isolate the first element of the vector Π; in this case, it is the
variable π0 in the first equation.

Next, isolate the second element of the vector Π, namely, π1 in the second
equation, and then keep isolating all the variables of the vector Π. This
leads to the following vector equation for Π

Π = ΠQ̂,

where Q̂ is different from the original Q because of the algebraic
operations we performed when we isolated the elements of the Π vector.
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Continuous-time Markov Chains (cont’d)

Then, perform the successive substitution operations by first setting
arbitrary initial values to the vector Π; substitute them in the right-hand
side of the above equations and obtain different values at the left-hand
side which are then substituted back in the right-hand side, etc.

For example, the initial setting can be Π = 1 without any regards to the
normalization equation.

When the values obtained for Π are sufficiently close to those obtained in
the previous subsection, say, within a distance no more than 10−6, stop.

Finally, normalize the vector Π obtained in the last iteration. This is the
desired solution.
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Continuous-time Markov Chains (cont’d)

The Curse of Dimensionality

In many applications, the Q matrix is too large, so it may not be possible
to solve the steady-state equations in reasonable time. Actually, the case
of a large state-space (or large Q matrix) is common in practice.

This is often occur when the application lead to a Markov-chain model
that is of high dimensionality. Consider for example a 49 cell mobile
network, and assume that every cell has 23 voice channels.

Assuming Poisson arrivals and exponential call time duration and cell
sojourn times.

Then this cellular mobile network can be modeled as a continuous time
Markov chain with each state representing the number of busy channels in
each cell.
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Continuous-time Markov Chains (cont’d)

In this case, the number of states is equal to 2449, so a numerical solution
of the steady-state equations is computationally prohibitive.

When an exact numerical solution is not attainable, we often rely on
simulations or approximations which we will discuss later.
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Renewal Process

An informal way to describe a renewal process is a generalization of the
Poisson process where the inter-arrival times are not necessarily
exponentially distributed but are still positive IID random variables with
finite mean.

Because of this generalization a renewal process is not necessarily
memoryless.

There are discrete-time and continuous-time renewal processes. In a
discrete-time renewal process the inter-arrival times take only positive
integer values while in a continuous-time renewal processes the
inter-arrival times are positive real valued.

Note: The definition of a renewal process is sometimes extended to cases
that allow a zero value for the inter-arrival times to occur with positive
probability. This implies more than one arrival at the same point in time.
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IPP – a Renewal Process

The IPP is a renewal process because the time from an arrival (called
arrival A) until the next arrival (called arrival B) is independent of the
evolution of the process before event A.

Therefore, the inter-arrival times are independent.

In fact, because of the memoryless property of the exponential distribution
of the inter-arrival times during the active mode, the distribution of the
inter-arrival times is equal to the distribution of the time from any
moment the system is in the active mode until the next arrival.

Therefore, the inter-arrival times are IID.
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IPP – a Renewal Process (cont’d)

Because of the underlying structure of the IPP, the inter-arrival times are
also continuous and positive.

Let X be a random variable representing the inter-arrival time of the IPP.

As mentioned above, because of the memoryless property of exponential
distribution, X is equal to the time until the next arrival given that now
the system is in active mode.
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IPP – a Renewal Process (cont’d)

Then X can be described by the following recursive equation.

X = Y + α(Z + X ),

where Y is an exponentially distributed random variable with parameter
λ+ δ1 representing the time from the last arrival until the next event that
can be either an arrival or change of mode from active to nonactive,

Z is an exponentially distributed random variable with parameter δ0

representing the duration of a nonactive period,

X on the right-hand side represents the time until the next arrival from the
moment the system is again in the active mode,

and α is the probability that the next event after an arrival is a change of
mode from active to nonactive, given by

α =
δ1

λ+ δ1
.
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IPP – a Renewal Process (cont’d)

Then

X =
Y + αZ

1− α
.

X =
Y + δ1

λ+δ1
Z

1− δ1
λ+δ1

=
(λ+ δ1)Y + δ1Z

λ
.

Thus,

X =
λ+ δ1

λ
Y +

δ1

λ
Z .

Taking expectations on both sides gives

E [X ] =
λ+ δ1

λ
E [Y ] +

δ1

λ
E [Z ].
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IPP – a Renewal Process (cont’d)

By the definitions of the random variables Y and Z , we have

E [Y ] =
1

λ+ δ1
,

and

E [Z ] =
1

δ0
.

After substituting the latter two equations in the previous one, we obtain

E [X ] =
λ+ δ1

λ

(
1

λ+ δ1

)
+
δ1

λ

(
1

δ0

)
=
δ0 + δ1

λδ0
.
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IPP – a Renewal Process (cont’d)

Let us now obtain E [X ] in a different way.

Consider the two-state continuous-time Markov chain of the mode process
which alternates between state 0 (non-active mode) and state 1 (active
mode).

Let πi be the probability of being in state i , i = 0, 1.

The 2×2 Q matrix is q00 = −δ0, q01 = δ0, q10 = δ1, q11 = −δ1.
That is,

Q =

[
−δ0 δ0

δ1 −δ1

]
.
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IPP – a Renewal Process (cont’d)

This gives rise to the steady state equations ΠQ = 0, which are two
dependent equations, so from one of them we have

π0δ0 = π1δ1.

We also have the normalizing equation

π0 + π1 = 1.

Solving these equations, we obtain

π0 =
δ1

δ0 + δ1

and

π1 =
δ0

δ0 + δ1
.
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IPP – a Renewal Process (cont’d)

The arrival rate of the IPP is given by

λIPP = λπ1 + 0× π0 =
λδ0

δ0 + δ1
.

Therefore, the mean inter-arrival time E [X ] is obtained by

E [X ] =
1

λIPP
=
δ0 + δ1

λδ0
.

This is consistent with the previous result.
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Why Queueing modelling?

There are queues everywhere: routers, computers, mobile phones,
banks, shops, supermarkets, hospitals, airports, roads, trains, libraries,
toilets, etc. etc.

Cornerstone of efficiency – the study of queues helps in making
systems more efficient.

Resource/facility dimensioning – how many servers or how much link
capacity we need to meet customers quality of service (QoS) –
tradeoffs between cost and QoS. Problem: minimize cost subject to
meeting QoS requirements.

Traffic flow management/routing (roads, airplanes, Internet, etc.) to
avoid congestion.

Scheduling and prioritization of tasks, jobs, patients, packets,
programs, etc.
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Bridging the Gap between Theory and Practice through
Simplification

In practice, queueing systems and networks often involve complex
characteristics and processes that not amenable to analysis.

Nevertheless, insight can be gained using simpler queueing models.

Modelling simplification is made when the aim is to analyze a complex
queueing system or network, such as the Internet, where packets on
their ways to their destinations arrive at a router where they are
stored and then forwarded according to addresses in their headers.

One element in the simplification process is the single-server queue
(SSQ).

Queueing analyses explain traffic and management processes and
their effect on queueing performance to help improve efficiency.
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Kendall’s Notation

In 1953, Kendall proposed notation of the following structure: A/S/k

A – time between arrivals; Examples: D (Deterministic), M
(Markovian/Memoryless - Poisson process), G (General), GI (General and
independent), and Geom (Geometric).
S – service time distribution; Examples: D (Deterministic), M
(Markovian/Memoryless - exponential), G (General), GI (General and
independent), and Geom (Geometric).
k – number of servers.

This has since been extended to A/S/k/N/Pop/Disc

N – total waiting room (buffer size); number of places in the buffer
including those customers that are being served. Default: infinity.
Pop – size of the total population from where the arrivals are coming.
Default: infinity.
Disc – the queue discipline; Examples: First In First Out (FIFO), Last In
First Out (LIFO), Processor Sharing (PS), ...). Default: FIFO.
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Kendall’s Notation (cont’d)

If default are used for Pop (if it is infinite), we use a dash “-” instead of
“/” before the queue discipline (Disc).
If Pop is finite, no more than Pop customers will occupy the buffer even if
N is infinite, so we do not use the default option.
However, if both Pop and N are infinite, we use the default for both, and,
again, we use a dash “-” instead of “/” before the queue discipline (Disc).

Examples:

M/M/1-PS represents the case of Poisson arrivals, exponential service
times, one server (SSQ), unlimited buffer, infinite sources, and processor
sharing service discipline.

M/M/1/N represents the case of Poisson arrivals, exponential service
times, single server, N buffer places, infinite sources, and FIFO service
discipline.
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Kendall’s Notation (cont’d)

More Examples:

D/D/1 denotes an SSQ with infinite buffer and population, FIFO queue
discipline, where both the inter-arrival times and the service times are
deterministic. This means that the inter-arrival times are all equal to each
other and the service times are all equal to each other.

M/M/1 denotes an SSQ with a Poisson arrival process and exponential
service times, with infinite buffer and population, and FIFO service
discipline.

GI/M/1 is an SSQ which is generalization of M/M/1 where the arrival
process is a renewal process and not necessarily Poisson.
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Kendall’s Notation (cont’d)

More Examples:

G/G/1 is a further generalization of GI/M/1 where the service times are
not necessarily exponentially distributed and may even depend on each
other, and the inter-arrival times may also be dependent. G/G/1 is the
most general infinite buffer FIFO SSQ considered in queueing theory where
both the arrival and service processes are general.

M/M/k/k represents the case of Poisson arrivals, exponential service
times, k servers, k buffer places, infinite sources, and FIFO service
discipline. No buffer places are available beyond the k places allocated to
customers that are being served. If all k servers are busy (serving k
customers) any additional arriving customer will be blocked.

M/G/k/k represents a generalization of M/M/k/k to the case of
generally distributed service times. As M/M/k/k, M/G/k/k represents a
k-server queue with Poisson arrivals and FIFO service discipline, without
additional waiting room except at the servers.

c© Moshe Zukerman Chapter 3: General Queueing and Teletraffic Concepts June 3, 2020 7 / 35



Kendall’s Notation (cont’d)

More Examples:

M/G/k/N (with N ≥ k) represents k-server queue with Poisson arrivals
and generally distributed service times which is a generalization of
M/G/k/k where a waiting room that can accommodate up to N − k
customers is added.

M/G/1-PS is a generalization of M/M/1-PS where the service
requirements are generally distributed. As M/M/1-PS, M/G/1-PS
represents a single server processor sharing queue with Poisson arrivals.
Notice that in an M/G/1-PS queue (and its special case M/M/1-PS),
although the service time of a customer/packet starts immediately upon
arrival it may continue for a longer time than its service requirement,
because the server capacity is always shared among all customers/packets
in the system.
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Kendall’s Notation (cont’d)

More Examples:

M/G/1/N-PS is a single server processor sharing queue with Poisson
arrivals and a generally distributed service time that applies to all the
customers, and the waiting room can accommodate up to N customers
including the customer in service. A special case of the latter is the
M/M/1/N-PS queue where the service time distribution is exponential.

M/G/k/N/Pop is a finite source queueing model where the population of
customers is limited to Pop with FIFO service policy, Poisson arrivals,
generally distributed service times, k servers, and the buffer size is limited
to N.
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Utilization

Utilization (Û) is the proportion of time that a server is busy on average.

0 ≤ Û ≤ 1

It is an important measure for queueing systems performance and
efficiency. In many cases, cost incur all the time but income is received
when server or facility is busy.

With multiple identical servers, the average utilization is considered.

Therefore, Û = 0 for M/M/∞ because in this case, the mean number of
busy servers is finite and the mean number of idle servers is infinite.

c© Moshe Zukerman Chapter 3: General Queueing and Teletraffic Concepts June 3, 2020 10 / 35



Utilization (cont’d)

Utilization of G/G/1

Consider a G/G/1 queue.
Random variable S is the service time; E [S ] = 1/µ (µ is the service rate.)
λ is the arrival rate.
Assume that µ > λ so that the queue is stable.

Then, Û =
λ

µ
.

Explanation: let L be an arbitrarily long period of time. The average
number of customers arrived within time period L is: λL. The average
number of customers that has been served during time period L is equal to
µÛL. Note that during L, customers are being served only during Û
proportion of L when the system is not empty.
Since L is arbitrarily long and the queue is stable, these two values can be
considered equal. Thus, µÛL = λL. Hence, Û = λ

µ .
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Utilization (cont’d)

Another Explanation

Again, consider a very long period of time L. The assumption of L being
arbitrarily long is required for both explanations to ensure that the edge
effects (i.e., effects of a customer being in service at the beginning or the
end of the time period L) are negligible.

Again, there are on average λL arrivals during period L. These arrivals
require on average a total service time of

λL× 1

µ
.

Therefore, the proportion of time the server is busy (Û) is obtained by

Û =
λL× 1

µ

L
=
λ

µ
.
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Little’s Formula

Two Forms of Little’s Formula for G/G/1

λ – arrival rate of customers to the system

E [Q] – the stationary mean queue-size including the customer in service

E [D] – the mean delay (system waiting time) of a customer from the
moment it arrives until its service is completed

E [Q] = λE [D]

E [NQ ] – the mean number of customers in the queue in steady-state
excluding the customer in service

E [WQ ] – the mean delay of a customer, in steady-state, from the moment
it arrives until its service commences (waiting time in the queue).

E [NQ ] = λE [WQ ]

c© Moshe Zukerman Chapter 3: General Queueing and Teletraffic Concepts June 3, 2020 13 / 35



Little’s Formula (cont’d)

Little’s formula applies to a wide range of systems and not only to
G/G/1.

An intuitive (non-rigorous) explanation: Consider a customer that just
left the system (completed service). This customer sees behind his/her
back on average E [Q] customers. Who are these customers? They are the
customers that had been arriving during the time that our customer was in
the system. Their average number is λE [D].
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Little’s Formula (cont’d)

The amusement park explanation (Bertsekas, 2002) Consider an
amusement park where customers arrive at a rate of λ per time unit.
Assume that the park is in stationary condition. An arriving customer
spends on average time E [D] at various sites, and then leaves. The park
charges one dollar per unit time a customer spends in the park. The mean
queue size E [Q] is the mean number customers in the park in steady state.
Under these assumptions, the rate at which the park earns its income is
E [Q] per unit time. Let L be an arbitrarily long period of time. The mean
number of customers that arrive during L is λL. Because L is arbitrarily
long, we can assume that all the customers that arrive during L also left
during L. Since a customer on average pays E [D] dollars for its visit in the
park, and there are on average λL customers visiting during L, the total
income earned by the park on average during L is λLE [D]. Therefore, the
rate at which the park earns its income in steady state per unit time is
λLE [D]/L = λE [D]. We also know that this rate is equal to E [Q].
Therefore, λE [D] = E [Q].
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Little’s Formula (cont’d)

A graphical proof of Little’s formula for G/G/1 (Bertsekas and
Gallager, 1992):
Consider a stable G/G/1 queue that starts empty at time t = 0.
A(t) – the number of arrivals up to time t
D(t) – the number of departures up to time t
Q(t) – the queue-size (number in the system) at time t

Q(t) = A(t)− D(t), t ≥ 0.

L – arbitrarily long period of time, so all arrivals during L left during L.

E [Q] =
1

L

∫ L

0
Q(t)dt.

Di – the time spent in the system by the ith customer.∫ L

0
Q(t)dt =

A(L)∑
i=1

Di .
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Little’s Formula (cont’d)

Time

Number of: arrivals (A(t)) departures (D(t)) 

1

2

L

4

3

5

6

A(t)

D(t)

D1

D3

D2

D6

D5

D4

Figure 1: Graphical illustration for the proof of Little’s formula for G/G/1.
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Little’s Formula (cont’d)

Therefore,

1

L

∫ L

0
Q(t)dt =

1

L

A(L)∑
i=1

Di

and realizing that

λ =
A(L)

L
,

and

E [D] =
1

A(L)

A(L)∑
i=1

Di ,

we obtain

E [Q] =
1

L

∫ L

0
Q(t)dt =

A(L)

L

1

A(L)

A(L)∑
i=1

Di = λE [D].
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Delay and Loss Systems

Delay system: A queueing system with infinite buffer, such as, G/G/1 or
G/G/2, where an arriving customer that finds all servers busy will wait in
the queue until it is served, or system such as G/G/1-PS where the service
time and overall delay is increased with increasing congestion.

Loss system: A system without additional buffer space beyond what is
available at the servers, e.g, M/G/k/k, where an arriving customer that
finds all servers busy is blocked and cleared from the system. If the call is
not blocked, it immediately starts its service upon its arrival. In loss
systems, the term holding time, is often used for the time spent in the
system by a call if it is served by a dedicated server. Let h be the mean
holding time. As our holding time definition is associate with loss systems
without waiting time, h is also the mean service time, namely,

h = E [S ] =
1

µ
.

The term holding time has been often used in telephony to describe the
average time the phone call holds a circuit.
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Delay and Loss Systems (cont’d)

Systems like M/G/1/k and M/G/1/k-PS are called delay-loss systems,
such systems are characterized by both effects of delay and loss taking
place. If a customer arrives and all servers are busy but the buffer (waiting
room) is not full, it may suffer some additional delay, but if the buffer is
full, the customer will be rejected and lost.

Finally, there are systems that are neither delay nor loss systems. These
are theoretical systems where the number of servers is infinite. In such
systems an arriving customer will always receive service at the full service
rate upon arrival and will never be delayed or blocked.
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Delay and Loss Systems (cont’d)

Increasing delay and/or blocking probability which adversely affects
users QoS is used by systems to save resources.

System designers should always consider tradeoff between cost and
customers QoS.

A common optimization problem solved by businesses is:

minimize: cost
subject to: meeting customers QoS requirements.
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Traffic

Quantity of traffic is measured in units of erlangs (named after the Danish
mathematician Agner Krarup Erlang).

To measure the quantity of traffic, we consider the arrival rate of customer
calls as well as the server time the calls require.

If a quantity of traffic A [erlangs] are offered to a system then A is given by

A =
λ

µ
= λh.

In other words, the quantity of traffic in erlangs is the product of the call
arrival rate (λ) and the mean time that a single server will serve a call
(1/µ), i.e., the mean time that a call occupies a server.

c© Moshe Zukerman Chapter 3: General Queueing and Teletraffic Concepts June 3, 2020 22 / 35



Traffic (cont.)

Notice that A [erlangs] is the mean number of arrivals per mean service
time.

Therefore, one erlang is one arrival per mean service time, so if one erlang
is admitted, it will require one server on average forever.

Accordingly, if A traffic is admitted, then A is the mean number of servers
required in steady state by this traffic load, and it is also the mean number
of simultaneous calls/customers served in progress.

If we have N users, and the ith user generates Ai erlangs, the total traffic
generated by the N users is

A =
N∑
i=1

Ai [erlang].
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Traffic (cont.)

Question: Consider a wireless system that provides channels each of
which can serve one phone call. There are 100 users making phone calls.
Each user makes on average one phone call per hour and the average
duration of a phone call is three minutes. What is the total traffic in
erlangs that the 100 users generate?

Answer: In such questions, it is important first to choose a consistent
time unit. Here it is convenient to choose minutes. Accordingly, the arrival
rate of each user is λi = 1/60 calls per minute. The mean call duration
(or holding time) is 3 minutes, so Ai = 3/60 = 1/20 [erlang], and the
total traffic is 100× (1/20) = 100/20 = 5 [erlang].
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Traffic (cont.)

The quantity of traffic measured in erlangs is also called traffic intensity.
Then another related concept is traffic volume. Traffic volume is measured
in units of erlang-hour (or erlang-minute, or call-hour or call-minute, etc.)
and it is a measure of the traffic processed by a facility during a given
period of time. Traffic volume is the product of the traffic intensity and
the given time period, namely,

Traffic Volume = Traffic Intensity × Time Period.

Let A, λ, µ, and h be the traffic intensity, arrival rate, service rate and
holding time, respectively. Then

A =
λ

µ
= λh.
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Traffic (cont.)

Let aT be the number of arrivals during the given period of time T . Then
the relevant arrival rate can be estimated by

λ =
aT
T
.

Let VT be the traffic volume during T . Then

VT = AT =
aThT

T
= aTh.

This leads to a different (but equivalent) definition of traffic volume,
namely, the product of the number of calls during T and the mean holding
time, and this explains the traffic volume units of call-hour or call-minute.
They are also called erlang-hour or erlang minute. The latter result for VT

can be illustrated by the following example.
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Traffic (cont.)

Example

Consider a period of time of three hours and during this period of time,
120 calls have arrived and their average holding time is three minutes, then
the traffic volume is 3× 120 = 360 call-minute, or 360 erlang-minute, or
360/60 = 6 erlang-hour. Then, the traffic intensity in erlangs is obtained
by dividing the traffic volume in erlang-hour by the number of hours in the
given period of time. In our case, the traffic intensity is 6/3 = 2 [erlangs].
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Offered and Carried Traffic

There are two traffic related concepts called: offered traffic and carried
traffic. The offered traffic is defined as the mean number of arrivals (of
customers, calls or packets) per mean service time. Accordingly, it is equal
to the ratio λ/µ which is identical to the definition of traffic discussed in
the previous section. It is common to use the notation A that we used for
traffic, for the offered traffic as well.

The carried traffic is the average number of calls that are being served in
the system. In a system such as M/G/k/k every call is served by one
server, so the carried traffic is also the mean number of servers required to
serve the customers, calls or packets that admitted to the system. It is
also equal to the proportion of the offered traffic that is admitted to the
system. Both offered and carried traffic are measured in erlangs. The
relationship between offered and carried traffic is given by

[offered traffic](1− Pb) = [carried traffic]
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Offered and Carried Traffic (cont.)

Therefore, in systems where blocking does not occur, such as delay
systems and systems where the number of servers is infinite, we have that
Pb = 0, the offered and carried traffic are equal to each other.
As mentioned, another term to describe traffic which is often used is the
traffic intensity. Then offered traffic intensity and carried traffic intensity
are synonymous to offered traffic and carried traffic, respectively. In cases
of infinite buffer/capacity systems, such as M/M/1 and M/M/∞, the
term traffic intensity is used to describe both offered traffic and carried
traffic. Accordingly, ρ is called traffic intensity in the M/M/1 context and
A is the traffic intensity in an M/M/∞ system. Others use the term traffic
intensity in multiservice system for the offered load per server. To avoid
confusion, we will only use the term traffic intensity in the context of a
single server queue with infinite buffer, in which case, traffic intensity is
always equal to ρ = λ/µ.
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Work Conservation

Another important concept in queuing theory is the concept of work
conservation. A queuing system is said to be work conservative if a server
is never idle whenever there is still work to be done. For example, M/M/1
and M/M/1/7 are work conservative. However, a stable M/M/3 is not
work conservative because a server can be idle while there are customers
served by other servers.

c© Moshe Zukerman Chapter 3: General Queueing and Teletraffic Concepts June 3, 2020 30 / 35



Poisson Arrivals See Time Averages (PASTA)

Many of the queueing models we consider in this course involve Poisson
arrival processes. The PASTA property is important for analysis and
simulations of such queueing models. Let us further explain and prove this
important property.

The PASTA property implies that arriving customers in steady state will
find the number of customers in the system obeying its steady-state
distribution. In other words, the statistical characteristics (e.g., mean,
variance, distribution) of the number of customers in the system observed
by an arrival is the same as those observed by an independent Poisson
inspector.
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PASTA (cont’d)

In addition to the assumption of Poisson arrivals, for PASTA to be valid
we also need the condition that arrivals after time t are independent of the
queue size at time t, Q(t). For example, if we have a single-server queue
with Poisson arrivals and the service times have the property that the
service of a customer must always terminate before the next arrival, then
the arrivals always see an empty queue, and, of course, an independent
arrival does not.

However, in all the queueing systems that we study, this condition holds
because normally the server cannot predict the exact time of the next
arrival because of the pure chance nature of the Poisson process.
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Bit-rate Versus Service Rate

In many telecommunications design problems, we know the bit-rate of an
output link and we can estimate the load on the system in terms of the
arrival rate of items of interest that require service. Examples for such
items include packets, messages, jobs, or calls.
To apply queueing theory for evaluation of quality of service measures, it is
necessary, as an intermediate step, to calculate the service rate of the
system which is the number of such items that the system can serve per
unit time.
For example, if we know that the average message size is 20 Mega Bytes
[MB] and the bit-rate of the output link of our system (the capacity in
bit-rate of the output link) of is 8 Gigabits per second [Gb/s] and we are
interested in the service rate of the link in terms of messages per second,
we first calculate the message size in bits which is 20× 8 = 160 Mega bits
[Mb] or 160× 106 bits. Then the service rate is

8× 109

160× 106
= 50 messages per second.
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Queueing Models and Performance Analyses

We discuss various queueing models that are amenable to analysis.

The analysis is simplest for deterministic queues where the inter-arrival
and service times are deterministic (fixed values).

Afterwards, we will consider the so-called Markovian queues. These
queues are characterized by the Poisson arrival process, independent
exponential service times and independence between the arrival process
and the service times. They are denoted by M in the first two positions
(i.e., M/M/ · /·). Because of the memoryless property of Markovian
queues, these queues are amenable to analysis. In fact, they are all
continuous-time Markov chains with the state being the queue-size defined
as the number in the system n and the time between state transitions is
exponential. The reason that these time periods are exponential is that at
any point in time, the remaining time until the next arrival, or the next
service completion, is a competition between various exponential random
variables.

c© Moshe Zukerman Chapter 3: General Queueing and Teletraffic Concepts June 3, 2020 34 / 35



Queueing Modeling and Performance Analyses (cont’d)

We will also discuss the M/G/1 queue and queues with non FIFO
service disciplines including PS and LIFO. Note also that few results
for G/G/1 has already been mentioned.

We will also discuss queueing networks, and some queueing models
where certain traffic streams have priority over others.

Performance evaluation methods will mainly focus on analyses, but
also simulations will be discussed.

Applications will be considered with particular emphasis on
telecommunications applications.
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Preliminaries

Regardless of how long we run a simulation involving random processes,
we will never obtain the exact mathematical result of a steady-state
measure we are interested in.

To assess the error of our simulation, we begin by running a certain
number, say n, of simulation experiments and obtain n observed values,
denoted a1, a2, . . . , an, of the measure of interest.
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Sample Mean and Sample Variance

ā is the observed mean of the n observations.

ā =
1

n

n∑
i=1

ai .

σ2
a is the observed variance of the n observations.

σ2
a =

1

n − 1

n∑
i=1

(ai − ā)2.
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Confidence Interval

The confidence interval of ā, with confidence α, 0 ≤ α ≤ 1, is

(ā− Ur , ā + Ur ),

where

Ur = {t(1−α)/2,(n−1)}
σa√
n
.
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t(1−α)/2,(n−1)

t(1−α)/2,(n−1) is the appropriate percentage point for Student’s
t-distribution with n − 1 degrees of freedom.

The t(1−α)/2,(n−1) values are available in standard tables.

Example:

We are interested in 95% confidence.

This means α = 0.95, so 1− α = 0.05, and (1− α)/2 = 0.025.

For n = 6, we use t0.025,5 = 2.57.

For n = 11, we use t0.025,10 = 2.23.
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Microsoft (MS) ExcelTM TINV

Microsoft (MS) ExcelTM provides the function TINV whereby
TINV (1− α, n − 1) gives the appropriate constant based in t-distribution
for confidence α and n − 1 degrees of freedom.

Then the confidence interval of ā, with confidence α, 0 ≤ α ≤ 1, is

(ā− Ur , ā + Ur ),

where
Ur = TINV (1− α, n − 1)

σa√
n
.
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TINV examples

Let us now consider the above-mentioned two examples of n = 6 and
n = 11.

Using MS ExcelTM, TINV (0.05, 5) = 2.57 and TINV (0.05, 10) = 2.23.

That is, if we are interested in 95% confidence and we have n = 6
observations, we will use TINV (0.05, 5) = 2.57 to obtain the confidence
interval.

If we have n = 11 observations, we will use TINV (0.05, 10) = 2.23.

More values for t(1−α)/2,(n−1), or equivalently, TINV (1− α, n − 1), for
95% confidence (α = 0.95) and various n values, are provided in the
following tables.
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Table 1

α n t(1−α)/2,(n−1) (= TINV (1− α, n − 1))

0.95 5 2.78

0.95 6 2.57

0.95 7 2.45

0.95 8 2.36

0.95 9 2.31

0.95 10 2.26

0.95 11 2.23

0.95 12 2.20
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Table 2

α n t(1−α)/2,(n−1) (= TINV (1− α, n − 1))

0.95 13 2.18

0.95 14 2.16

0.95 15 2.14

0.95 16 2.13

0.95 17 2.12

0.95 18 2.11

0.95 19 2.10

0.95 20 2.09

0.95 21 2.09
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Tradeoff between n and accuracy

Generally, the larger the number of observations (n), the smaller is the
95% confidence interval, i.e., the smaller is Ur .

As certain simulations are very time consuming, a decision needs to be
made on the tradeoff between time and accuracy.

In many cases, when the simulations are not very time consuming, we can
increase the number of observations until required accuracy (length of
confidence interval) is achieved.
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Homework 1

Choose a set of 12 different real numbers to represent outcomes of multiple
measurements of the same quantity, and calculate the confidence interval.
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Homework 2

Generate 10 uniform (0,1) deviates compute their average. Repeat this 11
times. These repetitions will result in 11 different estimations of E [X ]
where X is a uniform (0,1) random variable. Use these 11 estimations to
obtain the confidence interval for the estimation of E [X ] based on the 10
deviates. Then repeat this exercise five more times, increasing the sample
size (number of deviates) using 100, 1,000, 10,000, 100,000 and 1,000,000
uniform (0,1) deviates. Observe the length of the confidence interval as
you increase the sample size.
Then, repeat this homework for the case where X is a uniform (a, b)
random variable for a range of values a and b.
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(Delayed) Homeworks 3 and 4

We will learn in Chapter 8 how to perform a Markov chain simulation of
M/M/k/k and in Chapter 19, we will learn to perform a Markov chain
simulation of a mobile network.
After you learn these, use confidence intervals for the M/M/k/k and
mobile cellular network simulations.
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Initial Comments

Much of the time in this course will be spent on analytical methods for
queueing performance evaluation. However, analytical approaches are
limited to cases that are amenable to analysis. Although analyses are
important as they provide valuable insight, many practical cases require
solutions based on computer simulations. In addition, computer
simulations provide alternative solutions that can validate various
approximations that rely on analyses. It is always important to solve
problems in more than one way, so the different approaches are used to
validate each other. We will therefore also extensively discuss various
simulation approaches.

Here, we will present an example of how to simulate a G/G/1 queue using
an approach called Discrete Event Simulation.

Although the example presented here is for a G/G/1 queue, the principles
can be easily extended to multi server and/or finite buffer queues.
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Step 1: Generate Two Sequences of Inter-arrival Times
and Service Times

Notice that if one generates sequences of independent random deviates for
the inter-arrival times and service times, the resulted queue model will be
GI/GI/1 which is a special case of G/G/1.

To generate a sequence dependent random variables, you may use the
inter-arrival times of MMPP, or exponential autoregressive process
mentioned in Chapter 21 in <classnotes.pdf>. Alternatively, you may
think of a different way to generate sequences of dependent deviates.

Homework: generate dependent sequences for the inter-arrival and service
times.
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Fill in the Table

In writing a computer simulation for G/G/1, we aim to fill in a table like
the following for several 100,000s or millions arrivals (rows).

arrival service queue-size service service delay

time duration on arrival starts ends

1 4 0 1 5 4

3 6 1 5 11 8

4 4 2

12 2

16 5

21 1
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Guide on Filling in the Table

The arrival times and the service durations values are readily obtained
from the inter-arrival and service time sequences.

Assuming that the previous rows are already filled in, the “queue-size
on arrival” is obtained by comparing the arrival time of the current
arrivals and the values in the “service ends” column of the previous
rows. In particular, the queue size on arrival is equal to the number of
customers that arrive before the current customer (previous rows)
that their “service ends” time values are greater than the arrival time
value of the current arrival.
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Guide on Filling in the Table (cont’d)

The “service starts” value is the maximum of the “arrival time” value
of the current arrival and the “service end” value of the previous
arrival. Also notice that if the queue size on arrival of the current
arrival is equal to zero, then the service start value is equal to the
“arrival time” value of the current arrival, and if the queue size on
arrival of the current arrival is greater than zero, then the service start
value is equal to the “service end” value of the previous arrival.

The “service ends” value is simply the sum of the “service starts” and
the “service duration” values of the current arrival.

The “delay” value is the difference between the “service ends” and
the “arrival time” values.
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How to Evaluate Queueing Performance Measures from
the Results of the Table

Using the results obtained in the last column, generating a histogram, 
we can estimate the delay distribution in steady-state.

We can also estimate the moments of the delay distribution using 
these results including the mean delay.

Having the mean delay, by Little’s formula, we can obtain the mean 
queue size.

However, in general, the “queue-size on arrival” values for all the 
customers do not provide directly, on their own, the steady-state 
queue-size distribution and moments.

Only for the special case of M/G/1 (including M/M/1 and M/D/1), 
due to PASTA, the “queue-size on arrival” values can be used directly 
to obtain the steady-state queue-size distribution and moments.
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Two ways to Evaluate the Queue Size Distribution and
Moments

1 Use a separate independent Poisson inspector. If the arrival
process does not follow a Poisson process, a separate independent
Poisson inspector is required. In such a case, we generate a Poisson
process: t1, t2, t3, . . . , and for each ti , i = 1, 2, 3, . . . we can
invoke the queue-size at time ti , denoted Qi , in a similar way to the
one we obtained the “queue-size on arrival” values. The Qi values are
then used to evaluate the queue-size distribution and moments.

2 Consider both the queue-size measurements and the time they
remain at that level. Record the total time spent in each state. If
there was an event (arrival or departure) at time tj when the G/G/1
queue entered state i and the next event (arrival or departure) at tk
when the G/G/1 queue exited state i , then the period tk − tj is added
to a counter recording the total time spent in the state i .
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Homework

1 Fill in the above table by hand. Then, modify the values in the
columns ”arrival time” and ”service duration” and again fill in the
table.

2 Write a computer simulation for a P/P/1 queue (a single-server
queue with Pareto inter-arrival and service time distributions) to
derive estimates for the mean and distribution of the delay and of the
queue-size. Perform the simulations for a wide range of parameter
values. Compute confidence interval.

3 Repeat the simulations, of the previous homework, for a wide range of
parameter values, for a U/U/1 queue, defined as a single-server queue
with Uniform inter-arrival and service time distributions, and for an
M/M/1 queue. For the M/M/1 queue, verify that your simulation
results are consistent with respective analytical results which we will
discuss later (but you can read ahead). For the U/U/1 queue, use the
Poisson inspector approach and the “time recording” approach and
verify that the results are consistent.
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Homework (cont’d)

4 Discuss the accuracy of your estimations in the different cases.

5 Use the principles presented here for a G/G/1 queue simulation to
write a computer simulation for a G/G/k/k queue. In particular,
focus on the cases of an M/M/k/k queue and a U/U/k/k queue,
defined as a k-server system without additional waiting room where
the inter-arrival and service times are uniformly distributed, and
compute results for the blocking probability for these two cases. For a
meaningful comparison use a wide range of parameter values.
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Preliminaries

We consider here the simple case where inter-arrival and service times
are deterministic.

To avoid ambiguity, we assume that if an arrival and a departure
occur at the same time, the departure occurs first. Such an
assumption is not required for Markovian queues where the probability
of two events occurring at the same time is zero, but it is needed for
deterministic queues.

Unlike many of the Markovian queues that we study in this book, for
deterministic queues, steady-state queue size distribution does not
exist because the queue size deterministically fluctuate according to a
certain pattern.

Therefore, for deterministic queues, we will use the notation
P(Q = n), for the proportion of time that there are n customers in
the queue, or equivalently, P(Q = n) is the probability of having n in
the queue at a randomly (uniformly) chosen point in time.
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Preliminaries (cont’d)

Accordingly, the mean queue size E [Q] will be defined by

E [Q] =
∞∑
n=0

nP(Q = n).

We will use the term blocking probability Pb to represent the
proportion of packets that are blocked.

To derive performance measures such as mean queue size, blocking
probability and utilization, in such deterministic queues, we follow the
queue-size process, for a certain transient period, until we discover a
pattern (cycle) that repeats itself. Then, we focus on a single cycle
and obtain the desired measures of that cycle.
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Unstable D/D/1

If λ > µ, the D/D/1 queue is unstable.

In this case, the queue size constantly grows and approaches infinity
as t →∞.

Also in this case, since there are always packets in the queue waiting
for service, the server is always busy, thus the utilization is equal to
one.
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Stable D/D/1

Let us consider now a stable D/D/1 queue, assuming λ ≤ µ.

Notice that for D/D/1, given our above assumption that if an arrival
and a departure occur at the same time, the departure occurs first,
the case λ = µ will also be stable.

Assume that the first arrival occurs at time t = 0.

The service time of this arrival will terminate at

t =
1

µ
.
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Stable D/D/1 (cont’d)

Then, another arrival will occur at time

t =
1

λ

which will be completely served at time

t =
1

λ
+

1

µ
.

etc. etc.

This gives rise to a deterministic cyclic process where the queue-size
takes two values: 0 and 1 with transitions from 0 to 1 in points of
time n(1/λ), n = 0, 1, 2, . . ., and transitions from 1 to 0 in points of
time n(1/λ) + 1/µ, n = 0, 1, 2, . . . .
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Stable D/D/1 (cont’d)

Each cycle is of time-period 1/λ during which there is a customer to
be served for a time-period of 1/µ, and there is no customer for a
time-period of 1/λ− 1/µ. Therefore, the utilization is given by

Û =

1
µ
1
λ

=
λ

µ

which is consistent with what we know about the utilization of
G/G/1.
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Stable D/D/1 (cont’d)

E [Q] = Û

Explanation 1: As each one of the customers that enters the system is
served before the next one arrives, E [Q] of D/D/1, denoted E [Q]D/D/1, is

equal to E [Ns ], and therefore, it is also equal to Û.

Explanation 2: Q alternates between the values 1 and 0, spending a
time-period of 1/µ at state 1, then a time-period of 1/λ− 1/µ at state 0,
then again 1/µ time at state 1, etc. If we pick a random point in time, the
probability that there is one in the queue is given by
P(Q = 1) = (1/µ)/(1/λ), and the probability that there are no customers
in the queue is given by P(Q = 0) = 1− (1/µ)/(1/λ).
Therefore, E [Q] = 0P(Q = 0) + 1P(Q = 1) = (1/µ)/(1/λ) = Û.
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Stable D/D/1 (cont’d)

E [Q]G/G/1 ≥ E [Q]D/D/1

The subscript G/G/1 refers to any stable G/G/1 queue, with λ being the
arrival rate and µ the service rate.
The subscript D/D/1 refers to a stable D/D/1 queue, with λ being the
arrival rate and µ the service rate.
This can be shown using Little’s formula E [Q] = λE [D] as follows.

E [Q]G/G/1 = λE [D]G/G/1 = λ

(
1

µ
+ E [WQ ]G/G/1

)
≥ λ 1

µ
= E [Q]D/D/1.
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D/D/k

If λ > kµ, the D/D/k queue is unstable.

In this case, the queue size constantly increases and approaches infinity as
t →∞, and since there are always more than k packets in the queueing
system, all k servers are constantly busy, thus the utilization is equal to
one.

If λ ≤ kµ, the queue is stable. Notice again that given our assumption
that if an arrival and a departure occur at the same time, the departure
occurs first, in the case λ = kµ, the D/D/k queue is stable.
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Stable D/D/k

If λ ≤ kµ, there must exist an integer n̂, 1 ≤ n̂ ≤ k such that

(n̂ − 1)µ < λ ≤ n̂µ,

or equivalently
n̂ − 1

λ
<

1

µ
≤ n̂

λ
.

n̂ is given by

n̂ =

⌈
λ

µ

⌉
.

dxe is called the ceiling of x ; it is defined as the smallest integer greater
or equal to x .
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Stable D/D/k (cont’d)

To prove the latter, notice that

n̂

λ
=

⌈
λ
µ

⌉
λ
≥

λ
µ

λ
=

1

µ
.

Also,

n̂ − 1

λ
=

⌈
λ
µ

⌉
− 1

λ
<

λ
µ

λ
=

1

µ
.

In addition, the integer n̂ cannot be larger than k because it will violate
the inequality

n̂ − 1

λ
<

1

µ
. �
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Stable D/D/k (cont’d)

The above inequalities imply that if the first arrival arrives at t = 0, there
will be additional n̂− 1 arrivals before the first customer leaves the system.

Therefore, the queue-size increases incrementally taking the value j at
time t = (j − 1)/λ, j = 1, 2, 3, . . . , n̂.

When the queue reaches n̂ for the first time, which happens at time
(n̂ − 1)/λ, the cyclic behavior starts.

Then, at time t = 1/µ the queue-size reduces to n̂ − 1 when the first
customer completes its service.
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Stable D/D/k (cont’d)

Next, at time t = n̂/λ, the queue-size increases to n̂ and decreases to n̂− 1
at time t = 1/λ+ 1/µ when the second customer completes its service.

This cyclic behavior continuous forever whereby the queue-size
increases from n̂− 1 to n̂ at time points t = (n̂ + i)/λ, and decreases from
n̂ to n̂ − 1 at time points t = i/λ+ 1/µ, for i = 0, 1, 2, . . . .
The cycle length is 1/λ during which the queue-size process is at state n̂,
1/µ− (n̂ − 1)/λ of the cycle time, and it is at state n̂ − 1, n̂/λ− 1/µ of
the cycle time.

Thus,

P(Q = n̂) =
λ

µ
− (n̂ − 1)

and

P(Q = n̂ − 1) = n̂ − λ

µ
.
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Stable D/D/k (cont’d)

The mean queue-size E [Q], can be obtained by

E [Q] = (n̂ − 1)P(Q = n̂ − 1) + n̂P(Q = n̂)

which after some algebra gives

E [Q] =
λ

µ
.

Homework: Perform the algebraic operations that lead to the last E [Q]
result.

This result is consistent with Little’s formula.
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Stable D/D/k (cont’d)

As customers are served as soon as they arrive, the time each of them
spends in the system is the service time 1/µ - multiplying it by λ, gives by
Little’s formula the mean queue size.

Since E [Q] in D/D/k gives the number of busy servers, the utilization
(which in this case is the average utilization per server) is given by

Û =
λ

kµ
.

c© Moshe Zukerman Chapter 5: Deterministic Queueing Models June 4, 2020 16 / 26



D/D/∞

The above equations derived for E [Q] and Û of D/D/k apply also to
D/D/∞ for finite λ and µ.

Notice that as k →∞, we obtain Û = 0.

This is consistent with the explanation that because in D/D/∞ there are
infinite number of servers and the mean number of busy servers is finite,
the average utilization per server must be equal to zero.
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D/D/k/k

In D/D/k/k there is no waiting room beyond those available at the
servers.

Recall that to avoid ambiguity, we assume that if an arrival and a
departure occur at the same time, the departure occurs first.

Therefore, if λ ≤ kµ, then we have the same queue behavior as in D/D/k
as no losses will occur.

The interesting case is the one where λ > kµ and this is the case we focus
on.
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D/D/k/k – The case: 1/µ > k/λ

Having λ > kµ, or 1/µ > k/λ, implies that

ñ =

⌈
λ

µ

⌉
− k

satisfies
k + ñ − 1

λ
<

1

µ
≤ k + ñ

λ
.

Homework: Prove the last statement.
Guide: Notice that

k + ñ

λ
=

⌈
λ
µ

⌉
λ
≥

λ
µ

λ
=

1

µ
.

Also,

k + ñ − 1

λ
=

⌈
λ
µ

⌉
− 1

λ
<

λ
µ

λ
=

1

µ
.
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The D/D/k/k Process and Its Cycles

Again, consider an empty system with the first arrival occurring at time
t = 0.

There will be additional k − 1 arrivals before all the servers are busy.

Notice that because 1/µ > k/λ, no service completion occurs before the
system is completely full.

Then ñ additional arrivals will be blocked before the first customer
completes its service at time t = 1/µ at which time the queue-size
decreases from k to k − 1.
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The D/D/k/k Process and Its Cycles

Next, at time t = (k + ñ)/λ, the queue-size increases to k and reduces to
k − 1 at time t = 1/λ+ 1/µ when the second customer completes its
service.

This behavior of the queue-size alternating between the states k and k − 1
continues until all the first k customers complete their service which
happens at time t = (k − 1)/λ+ 1/µ when the kth customer completes
its service, reducing the queue-size from k to k − 1.

Next, an arrival at time t = (2k + ñ − 1)/λ increased the queue-size from
k − 1 to k . Notice that the point in time t = (2k + ñ − 1)/λ is an
end-point of a cycle that started at t = (k − 1)/λ.
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The D/D/k/k Process and Its Cycles (cont’d)

This cycles comprises two parts: the first is a period of time where the
queue-size stays constant at k and all the arrivals are blocked, and the
second is a period of time during which no losses occur and the queue-size
alternates between k and k − 1.

Then a new cycle of duration (k + ñ)/λ starts and this new cycle ends at
t = (3k + 2ñ − 1)/λ.

In general, for each j = 1, 2, 3, . . ., a cycle of duration (k + ñ)/λ starts
at t = (jk + (j − 1)ñ − 1)/λ and ends at t = ((j + 1)k + j ñ − 1)/λ.

c© Moshe Zukerman Chapter 5: Deterministic Queueing Models June 4, 2020 22 / 26



Blocking Probability for D/D/k/k

In every cycle, there are k + ñ arrivals out of which ñ are blocked. The
blocking probability is therefore

Pb =
ñ

k + ñ
.

Since

k + ñ =

⌈
λ

µ

⌉
,

the blocking probability is given by

Pb =

⌈
λ
µ

⌉
− k⌈
λ
µ

⌉ .
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Mean Queue Size for D/D/k/k

Let A = λ/µ, the mean-queue size is obtained using Little’s formula to be
given by

E [Q] =
λ

µ
(1− Pb) =

kA

dAe
.
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Utilization for D/D/k/k

As in D/D/k, since every customer that enters a D/D/k/k system does
not wait in a queue, but immediately enters service, the utilization is given
by

Û =
E [Q]

k
=

A

dAe
.
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Summary of Results

The following table summarizes the results on D/D/1, D/D/k and
D/D/k/k . Note that we do not consider the cases λ = kµ,
k = 1, 2, 3, . . ., for which the corresponding results for the cases λ < kµ,
k = 1, 2, 3, . . ., are applicable assuming that if a departure and an arrival
occur at the same time, the departure occurs before the arrival.

Model Condition E [Q] Û

D/D/1 λ < µ λ/µ λ/µ

D/D/1 λ > µ ∞ 1

D/D/k λ < kµ A = λ/µ A/k

D/D/k λ > kµ ∞ 1

D/D/k/k λ < kµ A A/k

D/D/k/k λ > kµ kA/dAe A/dAe
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M/M/1 Preliminaries

M/M/1 is a single server queue (SSQ)

the arrival process follows a Poisson process with parameter λ

service times are assumed to be IID and exponentially distributed with
parameter µ, and are independent of the arrival process.

As M/M/1 is a special case of G/G/1, all the results that are applicable to
G/G/1 are also applicable to M/M/1.

For example,

Û = ρ = λ/µ,

π0 = 1− λ/µ = 1− ρ
Little’s formula.

M/M/1 is the simplest Markovian queue; it has only a single server and an
infinite buffer.
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The M/M/1 Queue-size Process as a Continuous-time
Markov Chain on the States: 0, 1, 2, . . . .

t

Arrival

0

1

2

3

Departure

Queue size (number of customers in the system)

Figure 1: Queue size evolution of M/M/1.
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The M/M/1 Queue-size Process as a Continuous-time
Markov Chain on the States: 0, 1, 2, . . . (cont’d).

If an M/M/1 queue-size process is at state 0, it will stay in state 0 for a
period of time that is exponentially distributed with parameter λ then it
moves to state 1.

If an M/M/1 queue-size process is at state n, for n ≥ 1, it will also stay
there an exponentially distributed amount of time, but this time, there is a
competition between two exponential random variables: one is the time
until the next arrival - with parameter λ, and the other is the time until
the next departure - with parameter µ.
The minimum of the two is also exponential, but with parameter λ+ µ,
and this minimum is the time the process stays in state n, for n ≥ 1.
We also know that after spending an exponential amount of time with
parameter λ+ µ, the process will move to state n + 1 with probability
λ/(λ+ µ) and to state n − 1 with probability µ/(λ+ µ).
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State Transition Diagram, Steady State Equations,
Reversibility, and the Output Process

The following diagram is the state transition diagram of M/M/1.

0

λ
$$

1

µ

dd

λ
$$

2

µ

dd

λ
$$

3

µ

dd

λ
$$

4

µ

dd

λ ..

· · ·

µ
ee

The following are the global balance steady-state equations for M/M/1.
π0λ = π1µ
π1(λ+ µ) = π2µ+ π0λ

and in general, for i ≥ 1 : πi (λ+ µ) = πi+1µ+ πi−1λ.

The normalizing equation is

∞∑
j=0

πj = 1.
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State Transition Diagram, Steady State Equations,
Reversibility, and the Output Process (cont’d)

0

λ
$$

1

µ

dd

λ
$$

2

µ

dd

λ
$$

3

µ

dd

λ
$$

4

µ

dd

λ ..

· · ·

µ
ee

The following are the detailed balance steady-state equations for M/M/1.
πiλ = πi+1µ, for i = 0, 1, 2, . . . .

Homework: Show how to obtain the M/M/1 detailed balance steady
state equations from the M/M/1 global balance steady state equations.

The equivalence of global balance and detailed balance in M/M/1 lead to:

Reversibility

The output process is Poisson

(M/M/1 is a birth-and-death process which also implies reversibility.)
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Derivation of the M/M/1 Steady State Probabilities

Using ρ = λ/µ, so we obtain,
π1 = ρπ0
π2 = ρπ1 = ρ2π0
π3 = ρπ2 = ρ3π0
and in general:

πi = ρiπ0 for i = 0, 1, 2, . . . .

As M/M/1 is a special case of G/G/1, we have π0 = 1− ρ, so

πi = ρi (1− ρ) for i = 0, 1, 2, . . . .

Homework: Show that π0 = 1− ρ by summing up the πi s and equating
the sum to 1.
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Four Performance Measures: E [Q], E [NQ ], E [D], E [WQ ]

Random variable Q is the queue-size in steady-state. Its mean is

E [Q] =
∞∑
i=0

iπi =
ρ

1− ρ
.

Homework: Derive the last result for the mean queue size E [Q].
We know: E [Q] = E [NQ ] + ρ, where E [NQ ] is the mean number of
customers in the queue (excluding the one in service). This gives

E [NQ ] =
ρ

1− ρ
− ρ =

ρ2

1− ρ
.

By Little’s formula, the mean delay is obtained by

E [D] =
E [Q]

λ
=

ρ

(1− ρ)λ
=

1

µ− λ
.

Mean waiting time in the queue (excluding the time in service) is

E [WQ ] = E [D]− 1/µ =
1

µ− λ
− 1

µ
=

ρ

µ− λ
.
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Mean Delay of Delayed Customers

D̂ = The delay of a delayed customer including the service time.
ŴQ = The delay of a delayed customer in the queue excluding the service
time.

To obtain E [ŴQ ], we use Little’s formula where we consider the queue
(without the server) as the system and the arrival rate of the delayed
customers which is λρ. Thus

E [ŴQ ] =
E [NQ ]

λρ
=

1

µ− λ
,

and

E [D̂] = E [ŴQ ] +
1

µ
=

1

µ− λ
+

1

µ
.
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Mean Delay of Delayed Customers (cont’d)

Now, let us check the latter using the Law of Iterated Expectation as
follows:

E [D] = (1− ρ)[Mean delay of a non-delayed customer]

+ ρ[Mean delay of a delayed customer]

= (1− ρ)
1

µ
+ ρ

(
1

µ− λ
+

1

µ

)
=

1

µ− λ
.

and we observe that consistency is achieved. Notice that this consistency
check is an alternative way to obtain E [D̂].

Homework: Derive E [D̂] using the Law of Iterated Expectation.
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Delay Distribution

M/M/1 delay is exponentially distributed because it comprises a geometric
number of phases each of which is exponentially distributed. The number
of phases Ph is equal to Q + 1 (Q in the queue at the time of arrival plus
own service time). We know that

P(Q = i) = πi = ρi (1− ρ).

Since Ph = Q + 1, we have

P(Ph = n) = P(Q + 1 = n) = P(Q = n − 1) = ρn−1(1− ρ).

Therefore, Ph is geometrically distributed with mean

E [Ph] =
1

1− ρ
.
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Delay Distribution (cont’d)

The mean delay equals the mean number of phases times the mean service
time 1/µ. Thus,

E [D] =
E [Ph]

µ
=

1

µ(1− ρ)
=

1

µ1− λ
.

This is consistent with the previous result obtained by Little’s formula.
Substituting 1/E [D] = µ− λ as the parameter of exponential density, the
density of the delay distribution is obtained to be given by

δD(x) =

{
(µ− λ)e(λ−µ)x if x ≥ 0
0 otherwise.

Var [D] =
1

(µ− λ)2
=

1

µ2(1− ρ)2
.
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Mean Busy Period

The busy period is the time elapsed from the moment a customer arrives
at an empty system until the first time the system is empty again.
The end of a busy period is the beginning of the so called idle period - a
period during which the system is empty.
Let TB and TI be the busy and the idle periods, respectively.

E [TI ] =
1

λ

E [TB ]

E [TB ] + E [TI ]
= ρ.

E [TB ]

E [TB ] + 1
λ

= ρ.

E [TB ] =
1

µ− λ
. (Same as mean delay!!!)
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Mean Busy Period (cont’d)

t

Arrival

Busy

Idle

0

1

2

3

Busy

Departure

Queue size (number of customers in the system)

Figure 2: Busy and idle periods in M/M/1.
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Mean Busy Period (cont’d)

Explanation of this potential counter-intuitive result

We have noticed that for the M/M/1 queue, the mean busy period is equal
to the mean delay of a single customer. This may seem counter-intuitive.

However, we can realize that there are many busy periods each of which is
made of a single customer service time. It is likely that for the majority of
these busy periods (service times), their length is shorter than the mean
delay of a customer.
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Mean Busy Period (cont’d)

Explanation using a Last In First Out (LIFO) queue

Consider two queues M/M/1 FIFO and M/M/1 LIFO, both with the same
parameters arrival and service rates λ and µ, respectively. They are both
birth-and-death processes with the same parameters so their respective
queue size processes are statistically the same. Then, by Little’s formula
their respective mean delays are also the same.

The mean delay of a LIFO customer is equal to the mean busy period
created if the customer arrives at an empty queue, and therefore, the mean
delay must be equal to the mean busy period in M/M/1 with FIFO service
policy.
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First Passage Time in M/M/1

As M/M/1 is a continuous-time Markov chain, the busy period is also the
first passage time from state 1 to state 0, and the mean idle period is the
first passage time from state 0 to state 1.

Homework:
Derive an expression for the mean first passage time for M/M/1 from
state n to state 0 and from state 0 to state n, for n ≥ 3.
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Dimensioning µ Based on Meeting Required Mean Delay

A problem that often arises in practice is associated with resource
allocation and dimensioning. If the demand is given, what is the minimal
(least cost) service rate (or link capacity) such that a prespecified delay
requirement is met. A simple version of this problem is the following.

Given a required mean delay and the arrival rate, assume that M/M/1
conditions hold, and we are asked to find the smallest value of µ, called
µ∗, such that required mean delay (E [D]R) is met. To find µ∗, we solve

E [D]R =
1

µ∗ − λ

µ∗ =
1 + λE [D]R

E [D]R
.

This will give the lowest (cheapest) service rate (µ∗) that meets the delay
requirement (E [D]R). If µ < µ∗ ⇒ too much delay. If µ > µ∗ ⇒ too
expensive. Therefore, µ∗ is the optimal choice for service rate.
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Dimensioning λ Based on Meeting Required Mean Delay

A second dimensioning problem is the following. Given service rate µ and
the required mean delay (E [D]R), find the highest possible arrival rate λ∗

that meets the delay requirement (E [D]R).
Now we need first to check if a feasible solution exists. That is, check if

1

µ
≤ E [D]R . This is the feasibility condition.

Notice that the delay (D) includes the service time, so if the required
mean delay is lower than the mean service time, no feasible solution exists,
we cannot satisfy this requirement.
On the other hand, if the feasibility condition holds, then we solve

E [D]R =
1

µ− λ∗
and we obtain

λ∗ =
µE [D]R − 1

E [D]R
.
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Homework

Consider again the problem of dimensioning µ based on meeting required
mean delay.

Show that µ∗ satisfies the condition

1

µ∗
≤ E [D]R .
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Effect of Rising Bit-rate on Link Efficiency and QoS

From E [D] =
1

µ− λ
, we obtain (µ− λ)E [D] = 1.

Dividing both sides by µE [D] and isolating ρ, we obtain

ρ = 1− 1

µE [D]
.

For constant E [D], ρ approaches one as µ (and also λ) approaches
infinity.

For a fixed ρ and arbitrarily large µ, the delay is arbitrarily small.

Potential for improving Quality of Service (QoS) and efficiency (lower
cost) with increased link speed.
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Multiplexing

Multiplexing: a method by which multiple traffic streams from possibly
different sources share a common transmission resource.

Multiplexing improves efficiency and it is related to efficiency gain from
rising traffic and link speed discussed earlier.

Multiplexing N traffic streams each of Poisson arrivals with rate λ implies
Poisson arrivals with rate Nλ. If the service rate increases to Nµ and
service times are exponentially distributed. Then, the mean delay is

E [D] =
1

N(µ− λ)
,

which is N times smaller then under the M/M/1 case with arrival rate λ
and service rate µ.
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Multiplexing (cont’d)

We know that in M/M/1, the delay statistics (mean and distribution) are
a function of what we call the spare capacity (or mean net input) which is
the difference between the service rate and the arrival rate.

If the arrival rate increases from λ to Nλ, and we aim to find the service
rate µ∗ such that the delay-related QoS measure is just met, we will need
to make sure that the spare capacity is maintained, that is

µ− λ = µ∗ − Nλ, or µ∗ = µ+ (N − 1)λ.

Multiplexing Gain = Mmg =
Nµ− µ∗

Nµ
=

N − 1

N
(1− ρ).

The last equality is obtained by substituting µ∗.

The multiplexing gain is positive for all N > 1.

The multiplexing gain increases with N.

The multiplexing gain is bounded above by 1− ρ. If ρ ≈ 1, Mmg ≈ 0.

In the limiting condition as N →∞, the multiplexing gain approaches
its bound 1− ρ.
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Time Division Multiple Access (TDMA) versus
Full MUltipleXing (FMUX)

Consider N users each transmitting packets at an average rate of Ru

[bits/second].

The average packet size is Su [bits] for any of the users.

Each user generates packets at rate λ̂ [packets/second].

Thus, λ̂ = Ru/Su.
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TDMA

Each of the users obtains a service rate of Bu [bits/sec].

Packet sizes are assumed to be exponentially distributed with mean Su
[bits], so the service rate in packets/second denoted µ̂ is given by
µ̂ = Bu/Su.

The packet service time is therefore exponentially distributed with
parameter µ̂. Letting ρ̂ = λ̂/µ̂, the mean queue size under TDMA, is
given by

E [QTDMA] =
ρ̂

1− ρ̂
,

and the mean delay is

E [DTDMA] =
1

µ̂− λ̂
.
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FMUX

For FMUX, the total arrival rate is Nλ̂ and the service rate is Nµ̂, so in
this case, the ratio between the arrival and service rate remains the same,
so the mean queue size that only depends on this ratio remains the same

E [QFMUX ] =
ρ̂

1− ρ̂
= E [QTDMA].

However, we can observe an N-fold reduction in the mean delay:

E [DFMUX ] =
1

Nµ̂− Nλ̂
=

E [DTDMA]

N
.

A telecommunication provider aims to meet packet delay requirement of
its N customers. Assume that TDMA provides satisfactory packet delay.
Assume that the M/M/1 assumptions hold. Then the provider does not
need a total capacity of Nµ̂ for the FMUX alternative. It is sufficient to
allocate µ̂+ (N − 1)λ̂.
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Dimensioning Based on Delay Distribution

Previously we considered dimensioning based on average delay. Now we
aim for a dimensioning meeting a requirement based on percentile of the
delay distribution; e.g., to require that no more than 1% of the packets
will experience over 100 millisecond delay.

In the context of the M/M/1 model, we define two dimensioning problems.

First problem
For a given λ, t ≥ 0 and α, find minimal µ value, denoted µ∗, such that

P(D > t) = e−(µ
∗−λ)t ≤ α.

The solution is:

µ∗ = λ− ln(α)

t
.
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Dimensioning Based on Delay Distribution (cont’d)

Second problem
For a given µ, t ≥ 0 and α, find maximal λ value, denoted λ∗, such that

P(D > t) = e−(µ−λ
∗)t ≤ α.

Again, we first must make sure that this problem has a feasible solution,
because the delay includes the service time and can never be less than the
service time. That is, for certain parameter values, even if the arrival rate
is very low, the delay requirements cannot be met, simply because the
service time requirements exceeds the total delay requirements.
To find the feasible range set λ∗ = 0, and obtain

µ >
− ln(α)

t
.
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Dimensioning Based on Delay Distribution (cont’d)

If a solution is feasible, we solve the second optimization problem by
solving for λ∗ the equation

P(D > t) = e−(µ−λ
∗)t = α,

and we obtain

λ∗ =
ln(α)

t
+ µ.
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A Markov-chain Simulation of M/M/1

If we are not interested in performance measures that are associated with
times (such as delay distribution). If our aim is to evaluate queue size
statistics or blocking probability, we can avoid tracking the time and use a
Markov chain simulation.

We collect the relevant information about the process at PASTA
time-points without even knowing what are the times at these points.

We simulate the evolution of the state of the process based on the
transition probability matrix and collect information on the values of
interest at selective PASTA points without being concerned about the
time.
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A Markov-chain Simulation of M/M/1 (cont’d)

Simulation to evaluate the mean queue size of M/M/1

Variables and input parameters: Q = queue size; Ê (Q) = estimation
for the mean queue size; N = number of Q-measurements taken so far
which is also equal to the number of arrivals so far; MAXN = maximal
number of Q-measurements taken; µ = service rate; λ = arrival rate.

Define function: I (Q) = 1 if Q > 0; I (Q) = 0 if Q = 0.
Define function: R(01) = a uniform U(0, 1) random deviate. A new
value for R(01) is generated every time it is called.
Initialization: Q = 0; Ê [Q] = 0; N = 0.

1. If R(01) ≤ λ/(λ+ I (Q)µ), then N = N + 1,
Ê (Q) = [(N − 1)Ê (Q) + Q]/N, and Q = Q + 1;
else, Q = Q − 1.
2. If N < MAXN go to 1; else, print Ê (Q).
Only two IF statements!!
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A Markov-chain Simulation of M/M/1 (cont’d)

Comment: The operation Q = Q + 1 is performed after the Q
measurement is taken. This is done because we are interested in Q values
seen by arrivals just before they arrive. If we include the arrivals after they
arrive we violate the PASTA principle.

t

Arrival

0

1
2

3

Poisson inspector arrival in M/M/1 

Queue size

Departure

Figure 3: Poisson inspector in M/M/1.
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A Markov-chain Simulation of M/M/1 (cont’d)

More Comments:

If the condition R(01) ≤ λ/(λ+ I (Q)µ) holds we have an arrival.
Otherwise, we have a departure. This condition is true with probability
λ/(λ+ I (Q)µ). If Q = 0 then I (Q) = 0 in which case the next event is an
arrival with probability 1. If the system is empty no departure can occur,
so the next event must be an arrival.

If Q > 0, the next event is an arrival with probability λ/(λ+ µ) and a
departure with probability µ/(λ+ µ). We have here a competition
between two exponential random variables: one (arrival) with parameter λ
and the other (departure) with parameter µ.
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A Markov-chain Simulation of M/M/1 (cont’d)

Departure
In a case of a departure, all we do is decrementing the queue size; namely,
Q = Q − 1. We do not record the queue size at these points because
according to PASTA arrivals see time-averages. (Notice that due to
reversibility, if we measure the queue size immediately after departure
points we will also see time-averages.)

Homework: Simulate an M/M/1 queue using a Markov-chain simulation
to evaluate the mean queue-size for the cases of Section 4.2 in
classnotes.pdf. Compare the results with the results obtain analytically and
with those obtained using the G/G/1 simulation principles. In your
comparison consider accuracy (closeness to the analytical results) the
length of the confidence intervals and running times.
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M/M/∞ Preliminaries

In M/M/∞,

there are infinite number of servers

the arrival process follows a Poisson process with parameter λ

service times are assumed to be IID and exponentially distributed with
parameter µ, and are independent of the arrival process.

Because the number of servers is infinite, the buffer capacity is
unlimited and arrivals are never blocked.

Offered traffic is equal to the carried traffic

Recall: The offered traffic is in units of erlangs, and it is given by

A =
λ

µ
.

Also, by Little′s formula, E [Q] =
λ

µ
= A.
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State Transition Diagram

The state transition diagram of M/M/∞ is similar to that of M/M/1
except that the rate downwards from state n (n = 1, 2, 3, . . .) is nµ rather
than µ reflecting the fact at state n there are n servers serving the n
customers. The state transition diagram of M/M/∞ is:
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λ
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µ

dd

λ
$$

2

2µ

dd

λ
$$

3

3µ
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λ
$$
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4µ
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λ ..

· · ·
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c© Moshe Zukerman Chapter 7: M/M/∞ August 3, 2019 3 / 16



Steady-State Equations

The queue evolution of M/M/∞ follows a continuous-time Markov chain
and a birth-and-death process – implying reversibility.

The steady-state probabilities πi (for i = 0, 1, 2, . . .) of having i customers
in the system satisfy the following detailed balance equations:

π0λ = π1µ
π1λ = π22µ
. . .
and in general:

πnλ = πn+1(n + 1)µ, for n = 0, 1, 2, . . . .

Normalizing equation:
∞∑
j=0

πj = 1.
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Solving the Steady-State Equations

Using the A notation we write
π1 = Aπ0
π2 = Aπ1/2 = A2π0/2
π3 = Aπ2/3 = A3π0/(3!)
and in general:

πn =
Anπ0
n!

for n = 0, 1, 2, . . . .

Summing up and equating the sum of the πns to 1, we obtain

1 =
∞∑
n=0

Anπ0
n!

.
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Solving the Steady-State Equations (cont’d)

By the definition of Poisson random variable, we obtain

1 =
∞∑
i=0

e−λ
λi

i !
.

Thus,

eλ =
∞∑
i=0

λi

i !

which is also the well-known Maclaurin series expansion of eλ. Therefore,

1 = π0e
A,
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Solving the Steady-State Equations (cont’d)

or
π0 = e−A.

Thus,

πn =
e−AAn

n!
for n = 0, 1, 2, . . . .

We observe that the distribution of the number of busy channels
(simultaneous calls or customers) in an M/M/∞ system is Poisson with
parameter A.
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Insensitivity

The above M/M/∞ results for πi , i = 0, 1, 2 . . . and for the mean
number of busy servers are insensitive to the shape of the service time
(holding time) distribution.

All we need to know is the mean service time and the results are
insensitive to higher moments of the service time.

This makes the model far more robust which allows us to use its analytical
results for many applications where the service time is not exponential.

This insensitivity result is valid for M/G/∞, but it is not valid for many
other systems including M/M/1, M/G/1, M/G/k and others.

This insensitivity property is valid also for the M/G/k/k system.

We will now provide intuitive (non-rigorous) explanations for the
insensitivity property of M/G/∞.
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Insensitivity (cont’d)

The insensitivity property of M/G/∞ with respect to the mean occupancy
is already observed via Little’s formula. A more direct explanation follows.

Consider an arbitrarily long period of time L and also consider the queue
size process that represents the number of busy servers at any point in
time between 0 and L. The average number of busy servers is obtained by
the area under the queue size process function divided by L. This area is
closely approximated by the number of arrivals during L which is λL times
the mean holding (service) time of each arrival (1/µ).

Therefore, the mean number of busy servers, which is also equal to the
mean number of customers in the system (queue size), is equal to
A = λ/µ (notice that the L is canceled out here). Since all the traffic load
enters the system (A) is also the carried traffic load.
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Insensitivity (cont’d)

The words “closely approximated” are used here because there are some
customers that arrive before L and receive service after L and there are
other customers that arrive before time 0 and are still in the system after
time 0. However, because we can choose L to be arbitrarily long, their
effect is negligible.

Since in the above discussion, we do not use moments higher than the
mean of the holding time, the mean number of busy servers (or mean
queue size) is insensitive to the shape of the holding-time distribution and
it is only sensitive to its mean.
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Insensitivity (cont’d)

We now explain why the distribution of the number of busy servers in
M/G/∞ is Poisson with parameter A which is also insensitive to the
holding time distribution.

We know that the arrivals follow a Poisson process. Poisson process
normally occurs in nature by having a very large number of independent
sources each of which generates occasional events (arrivals) - for example,
a large population of customers making phone calls. These customers are
independent of each other.

In M/G/∞, each one of the arrivals generated by these customers is able
to find a server and its arrival time, service time and departure time is
independent of all other arrivals (calls). Therefore, the event that a
customer occupies a server at an arbitrary point in time in steady-state is
also independent of the event that any other customer occupies a server at
that point in time.
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Insensitivity (cont’d)

Therefore, the server occupancy events are also due to many sources
generating occasional events.

Recall that a Binomial random variable with parameters n and p
approaches Poisson with parameter λ as n approaches ∞ and p approaches
zero and np = λ. (Here the Poisson parameter is A instead of λ.)

This explains the Poisson distribution of the server occupancy. From the
above discussion, we know that the mean number of servers is equal to A,
so we always have, in M/G/∞, in steady-state, a Poisson distributed
number of servers with parameter A which is independent of the shape of
the service-time distribution.
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A Multi-access Model

An interesting application of the M/M/∞ system is the following
multi-access problem (see Problem 3.8 in the book “Data Networks” by
Bertsekas and Gallager). Consider a stream of packets that their arrival
times follow a Poisson process with parameter λ. If the inter-arrival times
of any pair of packets (not necessarily a consecutive pair) is less than the
transmission time of the packet that arrived earlier out of the two, these
two packets are said to collide. Assume that packets have independent
exponentially distributed transmission times with parameter µ. What is
the probability of no collision?
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A Multi-access Model (Cont’ed)

Notice that a packet can collide with any one or more of the packets that
arrived before it. In other words, it is possible that it may not collide with
its immediate predecessor, but it may collide with a packet that arrived
earlier. However, if it does not collide with its immediate successor, it will
not collide with any of the packets that arrive after the immediate
successor.

Therefore, the probability that an arriving packet will not collide on arrival
can be obtained to be the probability of an M/M/∞ system to be empty,
that is, e−A. While the probability that its immediate successor will not
arrive during its transmission time is µ/(λ+ µ). The product of the two,
namely e−Aµ/(λ+ µ), is the probability of no collision.
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Birth Rate Evaluation

Another application of the M/M/∞ system (or M/G/∞ system) is to the
following problem. Consider a city with population 3,000,000, and assume
that (1) there is no immigration in and out of the city, (2) the birth rate λ
in constant (time independent), and (3) life-time expectancy µ−1 in the
city is constant. It is also given that average life-time of people in this city
is 78 years. How to compute the birth rate?

Using the M/M/∞ model (or actually the M/G/∞ as human lifetime is
not exponentially distributed) with E [Q] = 3, 000, 000 and µ−1 = 78,
realizing that E [Q] = A = λ/µ, we obtain,
λ = µE [Q] = 3, 000, 000/78 = 38461 new births per year or 105 new
births per day.
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Homework

Consider an M/M/∞ queue, with λ = 120 [call/s], and µ = 3 [call/s].
Find the steady state probability that there are 120 calls in the system.
This should be done by a computer. Use ideas presented when we
discussed how to to compute probabilities from a Poisson probability
distribution.
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The Exponential Random Variable (with Parameter µ)
(Revision)

Probability density function

f (x) =

{
µe−µx if x ≥ 0
0 otherwise.

Cumulative distribution function

F (x) =

∫ x

0
µe−µsds = 1− e−µx x ≥ 0.

Complementary distribution function:

F̄ (x) = e−µx x ≥ 0.

An important application of the exponential random variable is the time
until the next event.
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The Memoryless Property of the Exponential Distribution
(Revision)

A continuous random variable is called memoryless if for any t ≥ 0 and
s ≥ 0,

P(X > s + t | X > t) = P(X > s).

A proof that the exponential random variable is memoryless:

P(X > s + t | X > t) =
P({X > s + t} ∩ {X > t})

P(X > t)

=
P(X > s + t)

P(X > t)

=
e−µ(s+t)

e−µt

= e−µs = P(X > s).
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Distribution of The Minimum of Multiple Exponential
Random Variables (Revision)

Let X1 and X2 be independent and exponentially distributed random
variables with parameters µ1 and µ2, respectively.
Define: X = min[X1,X2].
The distribution of X is exponential with parameter µ1 + µ2.
Proof:
The complementary distribution of X is:

P(X > t) = P(min[X1X2] > t) = P(X1 > t ∩ X2 > t)

= e−µ1te−µ2t = e−(µ1+µ2)t .

In general, if X1,X2, . . . ,Xk are k independent and exponentially
distributed random variables with parameters µ1, µ2, . . . , µk , respectively,
the distribution of min[X1,X2, . . . ,Xk ] is exponential with parameter
µ1 + µ2 + · · ·+ µk .
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The Probability that One Random Variable is the Minimum
of Multiple Exponential Random Variables (Revision)

Let X1,X2, . . . ,Xk be k independent and exponentially distributed random
variables with parameters µ1, µ2, . . . , µk . Then,

Prob(X1 < min[X2,X3, . . . ,Xk ]) =
µ1

µ1 + µ2 + . . .+ µk
.

A Proof for the case k = 2

P(X1 < X2) = P(X2 > X1) =

∫ ∞
0

(e−µ2t)µ1e
−µ1tdt =

µ1
µ1 + µ2

.
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The Probability that One Random Variable is the
Minimum of Multiple Exponential Random Variables
(Revision) (cont’d)

To see the latter note that∫ ∞
0

(µ1 + µ2)e−(µ1+µ2)tdt = 1.

and∫ ∞
0

e−µ2tµ1e
−µ1tdt =

∫ ∞
0

µ1
µ1 + µ2

(µ1 + µ2)e−(µ1+µ2)tdt =
µ1

µ1 + µ2
.

Homework: Extend the proof to the general case of any k = 1, 2, 3, . . .
Hint: Consider two random variables: X1 and min[X2,X3, . . . ,Xk ].
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The Poisson Random Variable (Revision)

A Poisson random variable X with parameter λ has the following
probability function:

P(X = i) = e−λ
λi

i !
i = 0, 1, 2, 3, . . . .

E [X ] = Var [X ] = λ.
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Sum of Poisson Random Variables (Revision)

Question:
What is the probability distribution of the random variable Y = X1 + X2,
where X1 and X2 are two independent Poisson random variables with
parameters λ1 and λ2, respectively?
Answer:
The probability distribution of Y = X1 + X2 is Poisson with parameter
λ1 + λ2.
In general:
Let Y = X1 + X2+, . . . ,Xk , where X1,X2, . . . ,Xk are k independent
Poisson random variables with parameters λ1, λ2, . . . , λk , respectively.
The probability distribution of the random variable Y is Poisson with
parameter λ1 + λ2 + . . .+ λk .
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Sum of Poisson Random Variables (Revision) (cont’d)

A Proof for the case k = 2

P(Y = k) = P(X1 + X2 = k) =
k∑

i=0

P({X1 = i} ∩ {X2 = k − i})

=
k∑

i=0

PX1(i)PX2(k − i) =
k∑

i=0

λi1
i !
e−λ1

λk−i2

(k − i)!
e−λ2

= e−(λ1+λ2)
k∑

i=0

λi1λ
k−i
2

i !(k − i)!
=

e−(λ1+λ2)

k!

k∑
i=0

k!λi1λ
k−i
2

i !(k − i)!

=
e−(λ1+λ2)

k!

k∑
i=0

(
k

i

)
λi1λ

k−i
2 =

e−(λ1+λ2)(λ1 + λ2)k

k!
.

Show by induction the general case for any integer k > 0.
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Poisson Process (Revision)

The Poisson process is a pure-chance point process on the real line.

The points on the real line (that normally represents time) are events
(e.g. call arrivals). Events are random and independent of each other.

The parameter λ is the rate of the Poisson process.

The time between consecutive events is exponentially distributed with
parameter λ.

The mean time between consecutive events is equal to 1
λ .

The number of events in an interval time T is Poisson distributed
with parameter λT .

The mean number of events in an interval time T is equal to λT .

The variance of the number of events in an interval time T is also
equal to λT .

The number of events in disjoint intervals are independent random
variables, so the number of future events is independent of the past.
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Superposition of Poisson Processes (Revision)

Consider two Poisson processes: one with parameter λ1 and the other with
parameter λ2.

The superposition of these two processes is a new point process that
comprises all the points of both processes.

This superposition is a Poisson process with rate λ = λ1 + λ2.
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Superposition of Poisson Processes (Revision) (cont’d)

Notice that for any time interval T , the number of events in the process,
which is the superposition of the two processes, will be the sum of the
number of events occured in the two processes. Therefore, it is Poisson
distributed with parameter λ1T + λ2T = λT .

Notice also that the time between two consecutive events in the process,
which is the superposition of the two processes, will be the minimum of
two exponential random variables: one with parameter λ1 and the other
with parameter λ2. We know that this minimum is exponentially
distributed with parameter λ = λ1 + λ2.

In general: the superposition of k Poisson processes with parameters
λ1, λ2, . . . , λk , is a Poisson process with rate λ = λ1 + λ2, . . . , λk .

Again, show it by induction.
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Erlang B System (M/M/k/k)

The Erlang B system is a system of k channels (or servers) where calls
arrive according to a Poisson process with parameter λ. If a call arrives
and finds that all the channels are busy, the call is blocked and cleared
from the system. Otherwise, it will use one of the channels for a period of
time which is called the holding time. The holding time is assumed to be
exponential with parameter µ. Therefore, the mean of the holding time is
given by

E [holding time] =
1

µ
.

The traffic offered to the system or the offered traffic (denoted A) is
the product of the arrival rate by the mean holding time. It is measured by
a dimensionless unit called erlang (in honor of Agner Krarup Erlang), and
it is given by

A =
λ

µ
[erlangs].
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Erlang B System (cont’d)

Define πn as the steady state probability that exactly n channels are busy,
n = 0, 1, 2, . . . , k.

πk is the probability that k channels are busy. It is also the probability that
an arriving call is blocked. It is therefore called the blocking probability
which is an important system performance measure in many application. It
is also an important Quality of Service (QoS) measure in cellular networks.

π0 is the probability that all the channels are idle; namely, it is the
probability that the system is empty.

The carried traffic is given by (1− πk)A.

The lost traffic is the difference between the offered traffic and the
carried traffic and it is given by

A− (1− πk)A = πkA.
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Erlang B System (cont’d)

The Erlang B system is said to be in state n if exactly n channels are busy.
Accordingly, πn is the steady state probability that the Erlang B system is
in state n.

The following diagram is the state transition diagram of the Erlang B
system.
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When the system is in state 0, the next event must be an arrival.

However, when the system is in state n, for k ≥ n > 0, the next event can
be either an arrival or a departure.

When the system in is state k, and an arrival occurs, it will be blocked and
will not change the system state. Therefore, in state k, the next event
that will change the system state must be a departure.
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Erlang B System (cont’d)
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For any state n, for k ≥ n ≥ 0, the time until the next arrival is
exponentially distributed with parameter λ.

Therefore, when the system is in state 0, the time until the next event
(which must be an arrival) is exponentially distributed with parameter λ.

When the system is in state n, for k ≥ n > 0, the time until the next
departure is the minimum of n exponential random variables each of which
with parameter µ. Therefore, the time until the next event is
exponentially distributed with parameter nµ+ λ.
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Erlang B System (cont’d)

It is given that the system is in state n, for k ≥ n ≥ 0. (Notice that the
case n = 0 is now included.)

What is the probability that the next event is an arrival?

What is the probability that the next event is a departure?
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Erlang B System (cont’d)

Answers

The probability that the next event is an arrival is

λ

nµ+ λ
.

The probability that the next event is a departure is

nµ

nµ+ λ
.

Notice that these apply to the case n = 0 where the next event is an
arrival with probability 1.
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Continuous-time Markov Chain

A Markov chain is a random process that at any point in time can
be in a discrete number of states and the time it stays in the same
state follows a memoryless distribution. A Markov chain can be
continuous-time or discrete-time. In this lecture, we focus on
continuous-time Markov chains.

A continuous-time Markov chain stays in state i exponentially
distributed amount of time with parameter µi .

After spending an exponential amount of time in state i , it will transit
to state j with transition probability pij .

Because the exponential distribution is memoryless and the transition
probabilities are independent of the past evolution of the process, at
any point in time, the future evolution of the process depends only on
the present state.

Because of their special properties Markov chains are easy to analyse
and to simulate.
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Markov Chain Simulation of the Erlang B System

An Erlang B system is a continuous-time Markov chain. We will now show
how we can program a Markov chain simulation for an Erlang B system to
estimate the blocking probability.

Variables and input parameters:

k = number of servers
Q = number of customers in the system (queue size)
Bp = estimation for the blocking probability
Na = number of customer arrivals counted so far
Nb = number of blocked customers counted so far
MAXNa = maximal number of customer arrivals (It is used for the
stopping condition.)
µ = service rate
λ = arrival rate
R(01) = a uniform U(0, 1) random deviate (A new value for R(01) is
generated every time It is called.)
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Markov Chain Simulation of the Erlang B System (cont’d)

A Pseudo code for the estimation of the blocking probability

Initialization: Q = 0; Na = 0, Nb = 0.

1. If R(01) ≤ λ/(λ+ Qµ), then Na = Na + 1; if Q = k then Nb = Nb + 1,
else Q = Q + 1;
else, Q = Q - 1.

2. If Na < MAXNa go to 1; else, print Bp = Nb/Na.

Note: The condition R(01) ≤ λ

λ+ Qµ

indicates that the next event is an arrival. If this condition does not hold
we will have a departure (service completion).

The program has only two IF statements: the first checks if the next event
is an arrival or a departure, and the second is a stopping criterion.
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Steady-state (Detailed Balance) Equations of the Erlang B
System
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Let us write a set of linear equations for πn, n = 0, 1, 2, . . . , k.
We begin with the so-called normalizing equation based on the fact that
the sum of the steady-state probabilities must be equal to one. That is,

k∑
n=0

πn = 1.

Then, we write a set of steady-state equations that equate the rate of
transitions from state n to state n + 1 with the rates of transitions from
state n + 1 to state n, for n = 0, 1, 2, . . . , k − 1.

πnλ = πn+1(n + 1)µ, for n = 0, 1, 2, . . . , k − 1.
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The Erlang B Formula

This set of steady-state equations are solved by recursively writing
π1, π2, π3, . . . , πk in terms of π0, and then using the normalizing equation
to obtain π0. Finally, all the other πn are obtained including πk that gives
the blocking probability.

For details on these derivations, see: <classnotes.pdf> available on
Canvas.

In addition to πk , a common notation for the blocking probability is
Ek(A). Using this notation makes it clear that we assume an Erlang
system with offered traffic A and k channels.

Solution of the steady-state equations leads to the following well-known
Erlang B formula:

Ek(A) = πk =
Ak

k!∑k
n=0

An

n!

.
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The Erlang B Formula (cont’d)

Erlang B recursion

For systems with large k , it is difficult to compute the blocking probability
using the above formula. Then, the following recursion is useful.

Em(A) =
AEm−1(A)

m + AEm−1(A)
, for m = 1, 2, . . . , k.

When m = 0, there are no channels available, and therefore all the calls
are blocked, namely,

E0(A) = 1.

The above two equations give rise to a simple recursive algorithm by which
the blocking probability can be calculated for a large k .

For details on the derivations of the Erlang B recursion, see:
<classnotes.pdf> available on Canvas.
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The Erlang B Formula (cont’d)

Insensitivity of the Erlang B formula

An important property of the Erlang B formula is that it is insensitive to
the holding time distribution. Although we have assumed that the
holding times are exponentially distributed, the blocking probability result
of the Erlang B formula holds true even if the holding times are not
exponentially distributed. We only need know the mean holding time,
then, we can use Erlang B formula to obtain the exact blocking probability.

Homework:
Simulate an M/M/k/k queue based on the Markov-chain simulation
principles to evaluate the blocking probability for a wide range of
parameter values. Provide confidence intervals. Compare the simulation
results with results obtained by the Erlang B Formula. Do the Erlang B
results fall within the confidence intervals of the simulations?
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The Special Case: M/M/1/1

Homework: Derive a formula for the blocking probability of M/M/1/1 by
Erlang B Formula and by the Erlang B recursion.

Another way to obtain a formula for the blocking probability of M/M/1/1
is using Little’s formula. The M/M/1/1 system can have at most one
customer in it. Therefore, its mean queue size is given by

E [Q] = 0π0 + 1π1 = π1

which is also its blocking probability. The arrival rate into the system
(made only of successful arrivals) is equal to λ(1− E [Q]). The mean time
a customer stays in the system is 1/µ. Then, by Little’s formula,

λ(1− E [Q])

µ
= E [Q].

Isolating E [Q], the blocking probability is given by

π1 = E [Q] =
A

1 + A
.
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Properties of Erlang B Formula

The blocking probability Ek(A) monotonically increases as the offered
traffic A increases (for a fixed k).

The blocking probability Ek(A) monotonically decreases as the
number of servers k increase (for a fixed A).

If (1) the ratio A/k stays fixed, (2) A/k ≤ 1, and (3) k and A both
approach infinity, then Ek(A) approaches zero.

If (1) the ratio A/k stays fixed, (2) A/k > 1, and (3) k and A both
approach infinity, then Ek(A) approaches 1− k/A.

See <classnotes.pdf> for further discussions, proofs, homework and
references.
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M/M/k/k Utilization

The mean number of busy circuits in an M/M/k/k system fed by A
erlangs using Little’s formula is given by

E [Q] = (1− Ek(A))λ× 1

µ
= (1− Ek(A))A.

Accordingly, the utilization of an M/M/k/k system is given by

Û =
[1− Ek(A)]A

k
.
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M/M/k/k Dimensioning

The dimensioning problem in M/M/k/k is as follows. Find the
minimal number of circuits/servers – integer k , so that for a given A, the
value of Ek(A) is below a certain value (e.g. 0.01). Recall that the value
of Ek(A) is a QoS measure of customers or Grade of Service (GoS) for link
capacity dimensioning which eventually affect QoS.

Taking advantage of the monotonicity of Erlang formula, we can also solve
the dimensioning problem of finding the required minimal k .

We simply keep incrementing the number of servers/circuits k and
calculate in each case the blocking probability. When the desired blocking
probability (e.g., 1%) is reached, we have our answer.

Normally, it is impossible to find k that gives exactly, e.g. 1% blocking
probability, so we choose k such that Ek(A) < 1%, but Ek−1(A) > 1%.
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M/M/k/k Dimensioning (cont’d)

The following table provides the minimal values of k obtained for various
values of A such that the blocking probability is no more than 1%, and the
utilization in each case. Observe the increase in utilization with the traffic.

A k Ek(A) Utilization

20 30 0.0085 66.10%

100 117 0.0098 84.63%

500 527 0.0095 93.97%

1000 1029 0.0099 96.22%

5000 5010 0.0100 98.81%

10000 9970 0.0099 99.30%

Homework: Write a computer program to reproduce the results of the
above table.
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M/M/k/k Dimensioning (cont’d)

Dimensioning Simply by k = A for Heavy Traffic

Notice that for the case of A = 10, 000 erlangs, to maintain no more than
1% blocking, k value less than A is sufficient.

Recall that the carried traffic is not A but A(1− Ek(A)).

For A ≥ 10, 000, dimensioning simply by k = A will mean no more than
1% blocking and no less than 99% utilization - not bad for such a simple
rule of thumb! This also implies that if the system capacity is much larger
than individual service requirement, very high efficiency (utilization) can
be achieved without a significant compromise on QoS.

Let us now further examine the case k = A.
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M/M/k/k under Critical Loading (k = A)

If we maintain k = A and we increase both k and A, the blocking
probability decreases, the utilization increases, and interestingly, the
product Ek(A)

√
A approaches a constant, denoted C̃ , that does not

depend on A or k.

A k Ek(A) Utilization Ek(A)
√
A

10 10 0.215 78.5 % 0.679

100 100 0.076 92.4% 0.757

1000 1000 0.025 97.5% 0.785

10000 10000 0.008 99.2% 0.79365

20000 20000 0.00562 99.438% 0.79489

50000 50000 0.00356 99.644% 0.79599

Homework: Reproduce the results of the above table.
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Explanation of Low Blocking and High Utilization in a
Large M/M/k/k System with k = A

In such a case the standard deviation of the traffic is very small relative to
the mean.

Therefore, the traffic behaves close to deterministic (with very little
variations).

If 100 liters per second of water are offered, at a constant rate, to a pipe
that has capacity of 100 liters per second, then the pipe can handle the
offered load with very small losses.
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Insensitivity of the Erlang B Formula

The distribution and the mean of the number of busy servers is insensitive
to the shape of the service time distribution (although it is still sensitive to
the mean of the service time) in the cases of M/G/∞ and M/G/k/k.

For M/G/k/k , also the blocking probability is insensitive to the shape of
the service time distribution.

However, this insensitivity property does not extend to the arrival process.
We still require a Poisson arrival process for the Erlang B formula to apply.

If we have a more burtsy arrival process (e.g. Poisson batch arrivals), we
will have more losses than predicted by the Erlang B formula, and if we
have a smoother arrival process than Poisson, we will have less losses than
predicted by the Erlang B formula.
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Comparison D/D/1/1 versus M/M/1/1

We illustrate that Erlang B does not apply if the arrival process is not
Poisson by comparing M/M/1/1 versus D/D/1/1, where each of these
two systems is fed by A erlangs, and that A < 1.

Arrivals into the D/D/1/1 system with A < 1 will never experience losses
because the inter-arrivals are longer that the service times, so the service
of a customer is always completed before the arrival of the next customer.

Accordingly, by Little’s formula: E [Q] = A, and since
E [Q] = 0× π0 + 1× π1, we have that π1 = A and π0 = 1− A.

In this case, the blocking probability Pb is equal to zero and not to π1.

The utilization will be given by Û = π1 = A.
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Comparison D/D/1/1 versus M/M/1/1 (cont’d)

By contrast, for the M/M/1/1 system,
Pb = E1(A) = E [Q] = π1 = A/(1 + A), so π0 = 1− π1 = 1/(1 + A).
The utilization is obtained by Û = π1 = A/(1 + A), or

Û = (1− π1)A = [1− A/(1 + A)]A = A/(1 + A).

This comparison is summarized in the following table:

M/M/1/1 D/D/1/1

π0 1/(1 + A) 1− A

π1 A/(1 + A) A

Û A/(1 + A) A

Pb A/(1 + A) 0

E [Q] A/(1 + A) A

The results for the two systems are different.
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Two Types of Customers

Problem
Consider two classes of customers (packets). Class i customers, i = 1, 2
arrive following an independent Poisson process at rate of λi each of which
requires independent and exponentially distributed service time with
parameter µi , for i = 1, 2. There are k independent servers without
waiting room (without additional buffer). The aim is to derive overall
blocking probability.

Solution
The combined arrival process of all the customers is a Poisson process
with parameter λ = λ1 + λ2.

The probability of an arbitrary customer to belong to the first class is

p =
λ1

λ1 + λ2
=
λ1
λ
.
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Two Types of Customers (Cont’d)

Therefore, the service time of an arbitrary customer has hyperexponential
distribution because with probability p it is exponentially distributed with
parameter µ1, and with probability 1− p, it is exponentially distributed
with parameter µ2.

Accordingly, by the Law of iterated expectation, the mean service time
(holding time) is given by

E [S ] =
p

µ1
+

1− p

µ2

so A = λE [S ], and the blocking probability is Ek(A).
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Two Types of Customers (Cont’d)

Furthermore, let

Ai =
λi
µi

i = 1, 2

and observe that

E [S ] =

(
λ1
λ

)(
1

µ1

)
+

(
λ2
λ

)(
1

µ2

)
=

A1 + A2

λ
.

Then
A = λE [S ] = A1 + A2.

Homework: Extend the blocking probability derivation to the case of n
types of customers.
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Preemptive Priorities

We now extend the M/M/k/k loss system to the case where the arriving
calls (customers) are of m priority types. Where priority 1 represents the
highest priority and priority m represents the lowest priority.

In general, if i < j then priority i arrival may preempt a priority j customer
upon its arrival.

The arrival process of priority i customers follows a Poisson process with
rate λi , for i = 1, 2, 3, . . . ,m.

The service time of all the customers is exponentially distributed with
parameter µ.

The offered traffic of priority i customers is given by

Ai =
λi
µ
, i = 1, 2, 3, . . . ,m.
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Preemptive Priorities (Cont’d)

Let Pb(i) be the blocking probability of priority i customers.

Because the priority 1 traffic access the system regardless of low priority
loading, for the case i = 1, we have

Pb(1) = Ek(A1).

To obtain Pb(i) for i > 1, we first observe that because of the memoryless
of the exponential distribution, the blocking probability of all the traffic of
priority i and higher priorities, namely, the traffic generated by priorities
1, 2, . . . , i , is given by

Ek(A1 + A2 + . . . ,Ai ).
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Preemptive Priorities (Cont’d)

Next, we observe that the lost traffic of priority i , i = 1, 2, 3, . . . ,m, is
given by the lost traffic of priorities 1, 2, 3, . . . , i minus the lost traffic of
priorities 1, 2, 3, . . . , i − 1, namely,

[Lost traffic of priority i ] = (A1 + A2 + . . . ,Ai )Ek(A1 + A2 + . . . ,Ai )
−(A1 + A2 + . . . ,Ai−1)Ek(A1 + A2 + . . . ,Ai−1).

Therefore, the value of Pb(i) for i > 1, can be obtained as the ratio of the
lost traffic of priority i to the offered traffic of priority i , that is,

Pb(i) =

(∑i
j=1 Aj

)
Ek

(∑i
j=1 Aj

)
−
(∑i−1

j=1 Aj

)
Ek

(∑i−1
j=1 Aj

)
Ai

.
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Overflow Traffic of M/M/k/k

In many practical situations traffic that cannot be admitted to a k server
group overflows to another server group. In such a case the overflow
traffic is not Poisson, but it is more bursty than a Poisson process. That
is, the variance of the number of arrivals in an interval is higher than the
mean number of arrivals in that interval.

It is therefore important to characterize such overflow traffic by its
variance and its mean.

In particular, consider an M/M/k/k queueing system with input offered
traffic A and let M [Erlangs] be the traffic overflowed from this k-server
system.

M = AEk(A).
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Overflow Traffic of M/M/k/k (Cont’d)

Let V be the variance of the overflow traffic. Namely, V is the variance of
the number of busy servers in an infinite server systems to which the
traffic overflowed from our M/M/k/k is offered.

The following result known as Riordan Formula, can be used to obtain V .

V = M

(
1−M +

A

k + 1 + M − A

)
.

Note that M and V of the overflow traffic are completely determined by k
and A.

The variance to mean ratio of a traffic stream is called Peakedness. In our
case, the peakedness of the overflow traffic is denoted Z and is given by

Z =
V

M
,

and it normally satisfies Z > 1.
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Overflow Traffic of M/M/k/k (Cont’d)

Consider two loss systems called the primary and the secondary systems.

The number of servers in the primary system is k1 and the number of
servers in the secondary system is k2.

Assume that the offered traffic to the primary server group is equal to A
and the overflow traffic of the primary system is the offered traffic of the
secondary system.

Then the blocking probability of the secondary system is obtained by

Pb(secondary) =
Ek1+k2(A)

Ek1(A)
.

In this case we also know the mean and variance of the traffic offered to
the secondary system because they are statistics M and V of the overflow
traffic of the primary system.
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Multi-server Loss Systems with Non-Poisson Input

Consider a generalization of an M/M/k/k system to the case where the
arrival process is not Poisson.

In particular, given a multi-server loss system with k servers loaded by
non-Poisson offered traffic with mean M and variance V , find the blocking
probability.

This problem does not have an exact solution, but reasonable
approximations are available.

We will present two approximations:

1 Hayward Approximation

2 Equivalent Random Method (ERM).
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Hayward Approximation

The Hayward approximation is based on the following result.

A multi-server system with k servers fed by traffic with mean M and
variance V has a similar blocking probability to that of an M/M/k/k
system with offered load M

Z and k
Z servers. Hence, the blocking probability

is approximated by

Pb(k,M,V ) ≈ E k
Z

(
M

Z

)

where k
Z is rounded to an integer.

To be conservative, use for the number of servers:⌊
k

Z

⌋
.
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Equivalent Random Method (ERM)

Again we have a loss system with k servers and the mean and variance of
the offered traffic are M and V are known.

This offered traffic could have come from or overflowed from various
sources, the idea of ERM is to assume that the offered traffic comes from
a primary loss system with Neq servers and offered traffic Aeq.

We know M and V , but we need to find Neq and Aeq. Then we can use
the result obtained for the blocking probability Pb(k ,M,V ).
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Equivalent Random Method (ERM)

Equivalent Notations

M/M/k/k overflow ERM

to a secondary system

(mean) offered traffic - primary A Aeq

number of servers - primary k1 Neq

number of servers - secondary k2 k

(mean) offered traffic - secondary M M

variance offered traffic - secondary V V

blocking probability of Pb(secondary) Pb(k ,M.V )

secondary/non-Poisson system
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Equivalent Random Method (ERM)

Pb(k ,M,V ) ≈
ENeq+k(Aeq)

ENeq(Aeq)
,

where

Aeq ≈ V + 3Z (Z − 1),

and

Neq =
Aeq(M + Z )

M + Z − 1
−M − 1,

where

Z =
V

M
.
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M/M/k – a generalization of M/M/1

The M/M/k queue is a generalization of the M/M/1 queue to the case of
k servers.

As in M/M/1, for an M/M/k queue, the buffer is infinite and the arrival
process is Poisson with rate λ.

The service time of each of the k servers is exponentially distributed with
parameter µ.

As in the case of M/M/1 we assume that the service times are
independent and are independent of the arrival process.
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State Transitions of M/M/k

The M/M/k queue is said to be in state n, n ≥ 0 if there are exactly n
customers in the system (including in the service and waiting in the
queue). Accordingly, πn is the steady state probability that the M/M/k
queue is in state n.

The following diagram is the state transition diagram of the M/M/k
queue.
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As in M/M/1 and in M/M/k/k, when the system is in state 0, the next
event must be an arrival.

As in M/M/1, when the system is in state n, for n > 0, the next event can
be either an arrival or a departure.
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Steady State Equations of M/M/k

Letting A = λ/µ, and assuming the stability condition λ < kµ, or A < k ,
the M/M/k queue gives rise to the following steady-state equations:

π1 = Aπ0
π2 = Aπ1/2 = A2π0/2
π3 = Aπ2/3 = A3π0/(3!)
. . .
πk = Aπk−1/k = Akπ0/(k!)
πk+1 = Aπk/k = Ak+1π0/(k!k)
πk+2 = Aπk+1/k = Ak+2π0/(k!k2)
. . .
πk+j = Aπk+j−1/k = Ak+jπ0/(k!k j) for j = 1, 2, 3, . . .
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Steady State Equations of M/M/k (cont’d)

and in general:

πn =
Anπ0
n!

for n = 0, 1, 2, . . . , k − 1

and

πn =
Anπ0
k!kn−k

for n = k , k + 1, k + 2, . . . .
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Solution of the Steady State Equations

To obtain π0, we sum up both sides of the steady state equations, and
because the sum of the πns equals one, we obtain an equation for π0,
which its solution is

π0 =

(
k−1∑
n=0

An

n!
+

Ak

k!

k

(k − A)

)−1
.

Substituting the latter in the above steady state equations, we obtain the
steady-state probabilities πn, n = 0, 1, 2, . . . .
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Erlang C Formula

Of special interest is the so called Erlang C formula. It represents the
proportion of time that all k servers are busy and is given by:

Ck(A) =
∞∑
n=k

πn =
Ak

k!

k

(k − A)
π0 =

Ak

k!
k

(k−A)∑k−1
n=0

An

n! + Ak

k!
k

(k−A)
.

This leads to the following relationship between Erlang B and Erlang C
formulae.

Ck(A) =
kEk(A)

k − A[1− Ek(A)]
.
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Comparisons of Erlang B and C Results

In the following table, we observe significant differences between Ck(A)
and Ek(A) results as the ratio A/k increases. Clearly, when A/k > 1, the
M/M/k queue is unstable.

A k Ek(A) Ck(A)

20 30 0.0085 0.025

100 117 0.0098 0.064

500 527 0.0095 0.158

1000 1029 0.0099 0.262

5000 5010 0.0100 0.835

10000 9970 0.0099 unstable
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Notation - Revision

Q = the total number of customers in the system (waiting in the queue
and being served);

NQ = the total number of customers waiting in the queue (this does not
include those customers being served);

Ns = the total number of customers that are being served;

D = the total delay in the system (this includes the time a customer waits
in the queue and in service);

WQ = the time a customer waits in the queue (this excludes the time a
customer spends in service);

S = a random variable representing the service time.

D̂ = the delay of a delayed customer including the service time.

ŴQ = the delay of a delayed customer in the queue excluding the service
time.
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Queueing Performance Formulae

E [Q] = E [NQ ] + E [Ns ]

E [D] = E [WQ ] + E [S ].

E [S ] =
1

µ
.

To obtain E [Ns ] for the M/M/k queue, we use Little’s formula for the
system made of servers to obtain the mean number of busy servers given
by

E [Ns ] =
λ

µ
= A.
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Queueing Performance Formulae (cont’d)

To obtain E [NQ ], we consider two mutually exclusive and exhaustive
events: {Q ≥ k}, and {Q < k}. Recalling the Law of Iterated
Expectation, we have

E [NQ ] = E [NQ | Q ≥ k]P(Q ≥ k) + E [NQ | Q < k]P(Q < k).

To derive E [NQ | Q ≥ k], we notice that the evolution of the M/M/k
queue during the time when Q ≥ k is equivalent to that of an M/M/1
queue with arrival rate λ and service rate kµ. The mean queue size of
such M/M/1 queue is equal to ρ/(1− ρ) where ρ = λ/(kµ) = A/k. Thus,

E [NQ | Q ≥ k] =
A/k

1− A/k
=

A

k − A
.

Therefore, since E [NQ | Q < k] = 0 and P(Q ≥ k) = Ck(A), we obtain

E [NQ ] = Ck(A)
A

k − A
.
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Queueing Performance Formulae (cont’d)

E [Q] = E [NQ ] + E [Ns ] = Ck(A)
A

k − A
+ A.

Therefore, by Little’s formula

E [WQ ] =
Ck(A) A

k−A
λ

=
Ck(A)

µk − λ
.

Notice the physical meaning of E [WQ ]. It is the ratio between the
probability of having all servers busy and the spare capacity of the system.
The mean delay is readily obtained by adding the mean service time to
E [WQ ]. Thus,

E [D] =
Ck(A)

µk − λ
+

1

µ
.
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Delay Factor

Another useful measure is the so-called delay factor. It is defined as the
ratio of the mean waiting time in the queue to the mean service time.

Namely, it is given by

DF =
E [WQ ]

1/µ
=

Ck (A)
µk−λ

1
µ

=
Ck(A)

k − A
.

The rationale to use delay factor is that in some applications users that
require long service time may be willing to wait longer time in the queue in
direct proportion to the service time.
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Mean Delay of Delayed Customers

As in the M/M/1 case, to obtain E [ŴQ ], we use Little’s formula where we
consider the queue (without the servers) as the system and the arrival rate
of the delayed customers which in the present case is λCk(A). Therefore,

E [ŴQ ] =
ACk(A)

λCk(A)(k − A)
=

1

kµ− λ
.

E [D̂] = E [ŴQ ] +
1

µ
=

1

kµ− λ
+

1

µ
.

As in M/M/1, we check the latter using the Law of Iterated Expectation:

E [D] = (1− Ck(A))E [S ] + Ck(A)E [D̂]

= (1− Ck(A))
1

µ
+ Ck(A)

(
1

kµ− λ
+

1

µ

)
=

Ck(A)

µk − λ
+

1

µ
.

This consistency check is an alternative way to obtain E [D̂].

c© Moshe Zukerman Chapter 9: M/M/k March 24, 2025 14 / 16



Dimensioning

Potential dimensioning problems are of finding, for a given A, the smallest
k such that Ck(A), or the mean delay, is lower than a given value.

This is done by realizing that the value of Ck(A) or E [D] decreases as k
increases.

The dimensioning problem with respect to Ck(A) can be solved in an
analogous way to the M/M/k/k dimensioning problem.

Having the Ck(A) value for each k value, one can also obtain the minimal
k such that the mean delay is bounded by a given value.

A similar procedure can be used to find the minimal k such that delay
factor requirement is met.
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Utilization

The utilization of an M/M/k queue is the ratio of the mean number of
busy servers to k, therefore the utilization of an M/M/k queue is obtained
by

Û =
E [Ns ]

k
=

A

k
.

c© Moshe Zukerman Chapter 9: M/M/k March 24, 2025 16 / 16



Chapter 13: Processor Sharing

c© Moshe Zukerman

August 3, 2019

c© Moshe Zukerman Chapter 13: Processor Sharing August 3, 2019 1 / 16



Processor Sharing Preliminaries

In a processor sharing (PS) queueing system the server capacity is shared
equally among all the customers that are present in the system.

This model is applicable to a time-shared computer system where a central
processor serves all the jobs present in the system simultaneously at an
equal service rate. Another important application of PS is for a
multiplicity of TCP connections that share a common bottleneck.

The Internet router at the bottleneck simultaneously switches (serves) the
flows generated by the users, while TCP congestion control mechanism
guarantees that the service rate obtained by the different flows are equal.
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Processor Sharing Preliminaries (Cont’d)

As any of the other queueing models considered in this course, the PS
model is only an approximation for the various real-life scenarios.

It does not consider overheads and wastage associated with various real
life operations of computer systems, and therefore it may be expected to
underestimate queueing delay.

If the server capacity to render service is µ [customers per time-unit] and
there are i customers in the system, each of the customers is served at the
rate of µ/i .

As soon as a customer arrives, its service starts.
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The M/M/1-PS queue

The M/M/1-PS queue is characterized by Poisson arrivals and
exponentially distributed service-time requirement, as the ordinary (FIFO)
M/M/1 queue), but its service regime is assumed to be processor sharing.

In particular, we assume that the process of the number of customers i in
the system is a continuous time Markov chain, where customers arrive
according to a Poisson process with parameter λ [customers per time-unit]
and that the service time required by an arriving customer is exponentially
distributed with parameter µ.

We also assume the stability condition of λ < µ.
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The M/M/1-PS queue (Cont’d)

Let us consider now the transition rates of the continuous-time Markov
chain for the number of customers in the system associated with the
M/M/1-PS model.

Firstly, we observe that the transition rates from state i to state i + 1 is λ
as in the M/M/1 model.

We also observe that the rates from state i to state i + j for j > 1 and from
state i to state i − j for j > 1 are all equal to zero (again, as in M/M/1).

The latter is due to the fact that the probability of having more than one
event, arrival or departure, occurred at the same time is equal to zero.
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The M/M/1-PS queue (Cont’d)

To derive the rates from state i to state i − 1 for i ≥ 1 notice that at state
i , assuming that no arrivals occur, the time until a given customer
completes its service is exponentially distributed with rate µ/i .

Therefore, the time until the first customer out of the i customers that
completes its service is the minimum of i exponential random variables
each of which with rate µ/i , which is exponentially distributed with rate
i(µ/i) = µ.

Therefore, the transition rates from state i to state i − 1 is equal to µ
(again, as in M/M/1).
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The M/M/1-PS queue (Cont’d)

These imply that the process of number of customers in the system
associated with the M/M/1-PS model is statistically the same as the
continuous-time Markov chain that describes the M/M/1 (FIFO) queue.

Therefore, the queue size steady-state distribution {πi} and the mean
queue-size E [Q] obtained for M/M/1 are also applied to the M/M/1-PS
model. That is,

πi = ρi (1− ρ) for i = 0, 1, 2, . . .

and

E [Q] =
ρ

1− ρ
.
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The M/M/1-PS queue (Cont’d)

By Little’s formula the result obtained for the mean delay E [D] in Eq.
(??) is also applicable to the M/M/1-PS model:

E [D] =
1

(1− ρ)µ
=

1

µ− λ
.

However, the delay distribution of M/M/1 given by Eq. (??) does not
apply to M/M/1-PS.

Having obtained the mean delay for a customer in the M/M/1-PS queue,
an interesting question is what is the mean delay of a customer that
requires amount of service x . Here x represents the time that the
customer spends in the system to complete its service assuming that there
are no other customers being served and all the server capacity can be
dedicated to it. Let E [D|x ] be the mean delay of such customer
conditional on its service requirement x .
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The M/M/1-PS queue (Cont’d)

For an M/M/1 queue under the FIFO discipline, denoted in this section as
M/M/1-FIFO, the time a customer waits in the queue is not a function of
its service requirement x because it depends only on service requirements
of other customers. Only after the customer completes its waiting time in
the queue, x will affect its total delay simply by being added to the waiting
time in the queue.

In particular, for M/M/1-FIFO,

E [D|x ] = E [WQ ] + x =
ρ

µ− λ
+ x ,

where the last equality is obtained by substituting the value of E [WQ ]
obtained for M/M/1.
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The M/M/1-PS queue (Cont’d)

By comparison, in the case of the M/M/1-PS queue, for a customer that
requires service time of x from a dedicated server, its mean delay in the
system from the moment it arrives until its service is complete has linear
relationship with x . That is,

E [D|x ] = cx ,

for some constant c.

That is, under PS, the mean delay of a message has linear relationship
with its required service time.

The implication of this is that, on average, if a customer require twice as
much service than another customer, its mean delay will be twice that of
the delay of the other customer.
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The M/M/1-PS queue (Cont’d)

Note that as soon as a message arrives, its service starts. It does not need
to wait in a queue to the start of a service, but the service rate changes
with the load.

We know that under our stability assumption, the process of the number
of customers in the system is a stable and stationary continuous time
Markov chain.

It is a birth-and-death process because the transitions are only up by one
or down by one.

Therefore, the infinitesimal service rate obtained by a test customer will
also follow a stable and stationary continuous time Markov chain. This
provides intuitive explanation to the linear relationship of E [D|x ].
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The M/M/1-PS queue (Cont’d)

To obtain the parameter c, we first obtain the mean delay of an average
size message and then invoke the linearity of E [D|x ].

This is done by taking the mean with respect to x on both sides of
E [D|x ] = cx and invoking the law of iterated expectations, we obtain

E [D] = c
1

µ
,

and we obtain

1

(1− ρ)µ
= c

1

µ
.

Thus,

c =
1

1− ρ
,
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The M/M/1-PS queue (Cont’d)

so by the latter and E [D|x ] = cx , we obtain

E [D|x ] =
x

1− ρ
.

Comparing the two approaches PS and FIFO, PS is better for small
messages and FIFO is better for large messages. Normally, the customer /
message does not choose the system.

PS is used to avoid a system that allows jobs or customers that have very
large service demands to cause extreme congestion and large delay for
small messages.
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The M/M/1-PS queue (Cont’d)

Although the queue-size steady-state probabilities for M/M/1-PS and for
M/M/1-FIFO are the same, which implies that E [Q] and E [D] (by Little’s
formula) for both are also equal, the delay variances and distributions for
the two queues are different. The variance of the delay for
M/M/1-PS queue is given by (see references in the book)

Var [D] =
1

(µ− λ)2

(
2 + ρ

2− ρ

)
=

1

µ2(1− ρ)2

(
2 + ρ

2− ρ

)
.

Comparing this with M/M/1 delay variance, we observe that the variance
of the delay for the M/M/1-PS queue is larger than that for
M/M/1-FIFO, for 1 > ρ > 0, by the factor of(

2 + ρ

2− ρ

)
,

which increases from 1 to 3 as ρ increases from 0 to 1.

c© Moshe Zukerman Chapter 13: Processor Sharing August 3, 2019 14 / 16



The M/M/1-PS queue (Cont’d)

Intuitive Explanation

Intuitively, under PS, the delay of the very long messages (or customers
that require very long service time) is longer that under FIFO. This is
because under PS, a very long message not only needs to wait until the
messages that it finds in the system at the time of its arrival complete
their service, which is the case under FIFO; it also has to wait until many
of the messages that arrive after it arrives complete their service.

This effect is more pronounced as ρ increases.

Since the range of message delay values is between nearly zero
(experienced by very short messages that arrive at an empty queue) and
the longest delays experienced by the longest messages, the variance of the
delay under M/M/1-PS is longer than under M/M/1-FIFO.
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Insensitivity

One important property of a processor sharing queue is that the queue size
distribution, and therefore, the mean number of customers in the system
E [Q], the mean delay of a customer E [D], and the mean delay of a
customer with service requirement x , E [D(x)], are insensitive to the shape
of the distribution of the service-time requirements of the customers. In
other words, these results apply also to the M/G/1-PS model.

However, the insensitivity property does not apply to the delay distribution.

Finally, notice the similarity between the M/G/1-PS and the M/G/∞
models. They are both insensitive to the shape of the distribution of the
service time requirement in terms of the queue size distribution, mean
delay and mean number of customers in the system, but not in terms of
the delay distribution.

c© Moshe Zukerman Chapter 13: Processor Sharing August 3, 2019 16 / 16



Chapter 16: M/G/1 and Extensions

c© Moshe Zukerman

April 15, 2022

c© Moshe Zukerman Chapter 16: M/G/1 and Extensions April 15, 2022 1 / 24



M/G/1 Preliminaries

M/G/1 is a single server queue (SSQ)

the arrival process follows a Poisson process with parameter λ

service times are assumed to be IID and with mean E [S ] = 1/µ, and
standard deviation σS and are independent of the arrival process.

As M/G/1 is a special case of G/G/1, all the results that are applicable to
G/G/1 are also applicable to M/G/1. For example,

Û = ρ = λE [S ] = λ/µ.

The probability that there is no-one in the system is π0 = 1− ρ
Little’s formula.

M/M/1 is a special case of M/G/1. In M/G/1 the service times are no
longer exponentially distributed. This introduces significant complexity as
we can no longer use the Markov chain model.

M/D/1 is another special case of M/G/1 for the case where the service
times are deterministic.
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Pollaczek Khinchine (PK) Formula: Residual Service
Approach (Bertsekas and Gallager, 1992)

The waiting time in the queue of an arriving customer to an M/G/1 queue
is the remaining service time of the customer in service plus the sum of the
service times of all the customers in the queue ahead of the arriving
customer.

Therefore, the mean waiting time in the queue is given by

E [WQ ] = E [R] +
E [NQ ]

µ
,

where E [R] denotes the mean (unconditional) residual service time.

Question: What is E [R] for M/M/1?
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PK Formula: Residual Service Approach (Cont’d)

Answer:
For M/M/1,

E [R] =
ρ

µ
,
Why?

Define the following two events:

Event A = There is one customer in service.

Event B = There is no customer in service (the system is empty).

By the law of iterated expectation,

E [R] = P(A)× E [R | A] + P(B)× E [R | B] = ρ× 1

µ
+ (1− ρ)× 0 =

ρ

µ
.
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PK Formula: Residual Service Approach (Cont’d)

By Little’s formula
E [NQ ] = λE [WQ ]

and

E [WQ ] = E [R] +
E [NQ ]

µ
,

we obtain

E [WQ ] =
E [R]

1− ρ
.

Now all that remains is to obtain E [R].
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PK Formula: Residual Service Approach (Cont’d)
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Figure 1: R(t) – the residual service time as a function of time.
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PK Formula: Residual Service Approach (Cont’d)

Let T →∞, we obtain

E [R] =
1

2
λS2,

where S2 is the second moment of the service time.
Thus,

E [WQ ] =
λS2

2(1− ρ)

and

E [D] =
λS2

2(1− ρ)
+ 1/µ.
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PK Formula: Residual Service Approach (Cont’d)

Recalling that σ2s = S2 − (1/µ)2, Eq. the latter equation leads to the well
known Pollaczek Khinchine formula for the mean delay in an M/G/1
system:

E [D] =
λ(σ2s + µ−2)

2(1− ρ)
+

1

µ
=
ρ+ λµσ2s
2(µ− λ)

+
1

µ
.

Using Little’s formula, we obtain the Pollaczek Khinchine formula for the
mean number of customers in an M/G/1 system:

E [Q] = ρ+
ρ2 + λ2σ2s
2(1− ρ)

.

Observe that according to the PK formula, if we have two M/G/1
queueing systems, where they both have the same arrival and service rates,
but for one the variance of the service time is higher than that of the
other, the one with the higher variance will experience higher mean queue
size and delay.
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Special Cases: M/M/1 and M/D/1

Now let us consider the special case of exponential service time – i.e., the
M/M/1 case. To obtain E [Q] for M/M/1, we substitute σ2s = 1/µ2 in the
PK formula, and after some algebra, we obtain

E [Q] =
ρ

1− ρ

which is consistent with what we have learnt on M/M/1.
Another interesting case is the M/D/1 queue in which case we have:
σ2s = 0. Substituting the latter in the PK formula, we obtain

E [Q] =
ρ

1− ρ
× 2− ρ

2
.

Because the second factor, namely (2− ρ)/2, we see that E [Q] for M/M/1
is higher than E [Q] for M/D/1, with the same arrival and service rates, by
a factor in the range 1 to 2, and this factor monotonically decreases with ρ.
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Mean Busy Period of M/G/1

We have defined and discussed the concept of busy period in the context of
the M/M/1 queue. The same analysis applies to M/G/1, and we obtain:

E [TB ] =
1

µ− λ
.

What we learn from this is that the mean busy period is insensitive to the
shape of the service time distribution. In other words, the mean busy
periods of M/M/1 and M/G/1 systems are the same if the mean arrival
and service rates are the same.
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M/G/1-LIFO

Unlike the M/G/1-FIFO, but similarly to M/G/1-PS, the M/G/1-LIFO is
insensitive to the shape of the service time distribution.

We already know that the queue size process of M/M/1 is the same as
that of its M/M/1-LIFO equivalence. Therefore, they also have the same
mean queue size and delay.

Due to the insensitivity of M/G/1-LIFO, the M/M/1 results for E [Q],
E [D] and queue size distribution are applicable also to M/G/1-LIFO.
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M/G/1-LIFO (Cont’d)

Specifically, if we are given an M/G/1-LIFO queue with arrival rate λ and
mean service time 1/µ, denote ρ = λ/µ, then the queue size distribution is
given by:

πi = ρi (1− ρ) for i = 0, 1, 2, . . . .

The mean queue size is given by

E [Q] =
ρ

1− ρ

and the mean delay is given by

E [D] =
1

µ− λ
.
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M/G/1-LIFO (Cont’d)

To show why M/G/1-LIFO queue is insensitive and satisfies the above
equations, notice that an arriving customer that upon its arrival finds i
customers in the system will be served only during time when the system
is in state i + 1.

Furthermore, all the customers served when the system is in state i + 1
will be customers that have arrived when the system is in state i .

Therefore, the time the system spends in the state i + 1 comprises exactly
the service times of the customers that arrive when the system in state i .

c© Moshe Zukerman Chapter 16: M/G/1 and Extensions April 15, 2022 13 / 24



M/G/1-LIFO (Cont’d)

Now consider a long interval of time T . As we denote by πi the proportion
of time that the system is in state i , then during a long time interval T ,
the mean number of arrivals in state i is λπiT and their total service time
is equal to λπiT (1/µ) = ρπiT .

Accordingly, the proportion of time the system is in state i + 1 is given by

πi+1 =
ρπiT

T
= ρπi .

Since the latter holds for i = 0, 1, 2, . . ., then we observe that the
queue-size distribution of M/G/1-LIFO obeys the steady-state equations of
M/M/1 regardless of the shape of the service time distribution.
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M/G/1 with m priority classes

Let us consider an M/G/1 queueing system with m priority classes.

Let λj and µj be the arrival and service rate of customers belonging to the
jth priority class for j = 1, 2, 3, . . . ,m.

The mean service time of customers belonging to the jth priority class is
therefore equal to 1/µj .

The second moment of the service time of customers belonging to the jth
priority class is denoted S2(j).

We assume that priority class j has higher priority that priority class j + 1,
so Class 1 represents the highest priority class and Class m the lowest.
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M/G/1 with m priority classes (Cont’d)

For each class j , the arrival process is assumed to be Poisson with
parameter λj , and the service times are assume mutually independent and
independent of any other service times of customers belonging to the other
classes, and are also independent of any inter-arrival times.

Let ρj = λj/µj .

We assume that
∑m

j=1 ρj < 1.

We will consider two disciplines: nonpreemptive and preemptive resume.
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M/G/1 with m nonpreemptive priority classes

Under this regime, a customer in service will complete its service even if a
customer of a higher priority class arrive while it is being served.

Let E [NQ(j)] and E [WQ(j)] represent the mean number of class j
customers in the queue excluding the customer in service and the mean
waiting time of a class j customer in the queue (excluding its service
time), respectively.

Further let R be the residual service time (of all customers of all priority
classes). As we derived E [R] for M/G/1, we obtain

E [R] =
1

2

m∑
j=1

λjS2(j).

Homework: Derive this equation.
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M/G/1 with m nonpreemptive priority classes (Cont’d)

As in M/G/1, we have for the highest priority,

E [WQ(1)] = E [R] +
E [NQ(1)]

µ1

and similar to M/G/1, we obtain

E [WQ(1)] =
E [R]

1− ρ1
.

Regarding the second priority, E [WQ(2)] is the sum of the mean residual
service time E [R], the mean time it takes to serve the Class 1 customers in
the queue E [NQ(1)]/µ1, the mean time it takes to serve the Class 2
customers in the queue E [NQ(2)]/µ2, and the mean time it takes to serve
all the Class 1 customers that arrives during the waiting time in the queue
for the Class 2 customer E [WQ(2)]λ1/µ1 = E [WQ(2)]ρ1.
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M/G/1 with m nonpreemptive priority classes (Cont’d)

Putting it together

E [WQ(2)] = E [R] +
E [NQ(1)]

µ1
+

E [NQ(2)]

µ2
+ E [WQ(2)]ρ1.

By the latter and Little’s formula for Class 2 customers, namely,

E [NQ(2)] = λ2E [WQ(2)],

we obtain

E [WQ(2)] =
E [R] + ρ1E [WQ(1)]

1− ρ1 − ρ2
.

These lead to

E [WQ(2)] =
E [R]

(1− ρ1)(1− ρ1 − ρ2)
.
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M/G/1 with m nonpreemptive priority classes (Cont’d)

Also (show it as a homework)

E [WQ(3)] =
E [R]

(1− ρ1 − ρ2)(1− ρ1 − ρ2 − ρ3)
,

and in general (show it as a homework)

E [WQ(j)] =
E [R]

(1−
∑j−1

i=1 ρi )(1−
∑j

i=1 ρi )
.

The mean delay for a jth priority class customer, denoted E [D(j)], is given
by

E [D(j)] = E [WQ(j)] +
1

µj
for j = 1, 2, 3, . . . ,m.

c© Moshe Zukerman Chapter 16: M/G/1 and Extensions April 15, 2022 20 / 24



M/G/1 with m preemptive resume priority classes

In this case, an arriving customer of priority j never waits for a customer of
a lower priority class (of Class i for i > j) to complete its service.

Therefore, when we derive the delay of a customer of priority j , we can
ignore all customers of class i for all i > j .

Accordingly, the mean delay of a priority j customer satisfies the following
equation

E [D(j)] =
1

µj
+

R(j)

1−
∑j

i=1 ρi
+ E [D(j)]

j−1∑
i=1

ρi

where R(j) is the mean residual time of all customers of classes
i = 1, 2, . . . , j given by

R(j) =
1

2

j∑
i=1

λiS2(i).
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M/G/1 with m preemptive resume priority classes (Cont’d)

The first term of the equation for E [D(j)] is simply the mean service time
of a jth priority customer.

The second term is the mean time it takes to clear all the customers of
priority j or higher that are already in the system when a customer of Class
j arrives.

It is merely the equation that gives the mean time of waiting in the queue
in an M/G/1 queueing system where we replace ρ by

∑j
i=1 ρi which is the

total traffic load offered by customers of priority j or higher.

From the point of view of the jth priority customer, the order of the
customers ahead of it will not affect its mean delay, so we can “mix” all
these customers up and consider the system as M/G/1.
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M/G/1 with m preemptive resume priority classes (Cont’d)

The last term of the equation for E [D(j)] is the mean total work
introduced to the system by customers of priorities higher than j that
arrive during the delay time of our j priority customer.

Notice that we use the ρi s there because ρi = λi (1/µi ) representing the
product of the mean rate of customer arrivals and the mean work they
bring to the system for each priority class i .

The equation for E [D(j)] leads to

E [D(1)] =
(1/µ1)(1− ρ1) + R(1)

1− ρ1
,

and

E [D(j)] =
(1/µj)

(
1−

∑j
i=1 ρi

)
+ R(j)(

1−
∑j−1

i=1 ρi

)(
1−

∑j
i=1 ρi

) .
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M/G/1 with m preemptive resume priority classes (Cont’d)

Do the homework problems in the book and observe the following from
the solution of last homework problem.

For the M/M/1 with priorities model, if the queues of all priorities are
stable, and if the service rate is arbitrarily high, then the mean delay is
arbitrarily low regardless of the utilization. Then in such a case, there is
no much benefit in implementing priorities.

However, if for example, ρ1 + ρ2 > 1 but ρ1 < 1, then priority 1 customers
clearly benefit from having priority even if the service rate (and also arrival
rate) is arbitrarily large.

Notice that we have observed similar results for M/M/1 without priorities.

Also notice that we consider here a scenario where the service rate is
arbitrarily high and the utilization is fixed which means that the arrival
rate is also arbitrarily high.
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Preliminaries

Consider an open network of queues where every node has an infinite
buffer queue with one or more servers.

Customers are arriving from the outside of the network to any of the nodes
to obtain service and then may move to other nodes for further service
until the service is completed and they leave the network.

This is equivalent to messages that are generated in one node and are
transmitted to their destinations through other nodes (then the service is
the transmission).
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The Output Process

An important issue for such a queueing network is the statistical
characteristics of the output of such queues because in queueing networks,
output of one queue may be the input of another.

Burke’s Theorem states that, in steady-state, the output (departure)
process of M/M/1, M/M/k or M/M/∞ queue follows a Poisson process.

Because no traffic is lost in such queues, the arrival rate must be equal to
the departure rate, then any M/M/1, M/M/k, or M/M/∞ queue with
arrival rate of λ will have a Poisson departure process with rate λ in
steady-state.
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A Model of Two Queues in Series

Consider an example of a simple queueing network made of two identical
single-server queues in series.

The output of the first queue is the input of the second queue.

All the customers that complete service at the second queue leave the
system.

Assume that the customers that arrive into the first queue follow a Poisson
process with parameter λ.

The service times required by each of the arriving customers at the two
queues are independent and exponentially distributed with parameter µ.

c© Moshe Zukerman Section 19.1: Jackson Networks April 12, 2024 4 / 21



The Two Queue Model and Acyclic Networks

Under this two queue model we have

The amount of time a customer requires in the first queue is
independent of the amount of time a customer requires in the second
queue.

the service times are both independent of the arrival process into the
first queue.

Since the output process of the first queue is Poisson with parameter
λ, and since the first queue is clearly an M/M/1 queue, we have here
two identical M/M/1 queues in series.

This is an example of a network of queues where Burke’s theorem leads
immediately to a solution for queue size and waiting time statistics. A
class of networks that can be easily analyzed this way is the class of the
so-called acyclic networks. These networks are characterized by the fact
that a customer never goes to the same queue twice for service.
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Networks That Are Not Acyclic

If the network is not acyclic, the independence between inter arrival times
and between inter arrival and service times do not hold any longer.

This means that the queues are no longer Markovians.

To illustrate this let us consider a single server queue with feedback
described as follows.

Normally, a single node does not constitute a network, however, this
simple single queue example is sufficient to illustrate the feedback effect
and related dependencies.
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Single Queue with Feedback

Customers arrive into the system from the outside according to a Poisson
process with parameter λ and the service time is exponentially distributed
with parameter µ.

When the customer completes the service, the customer returns to the end
of the queue with probability p, and with probability (1− p), the customer
leaves the system.

Now assume that λ is very small and µ is very large.

Also assume that p > 0.99.

This results in an arrival process which is based on very infrequent original
arrivals (from the outside) each of which brings with it a burst of many
feedback arrivals that are very close to each other.

Clearly, this is not a Poisson process.
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Single Queue with Feedback (Cont’d)

Furthermore, the inter-arrivals of packets within a burst, most of which are
feedback from the queue output, are very much dependent on the service
times, so clearly we have dependence between inter-arrival times and
service times.

Nevertheless, the so-called Jackson’s Theorem extends the simple result
applicable to an acyclic network of queues to networks that are not acyclic.

In other words, although the queues are not M/M/1 (or M/M/k or
M/M/∞), they behave in terms of their queue-size statistics as if they are.
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Jackson’s Theorem

Consider a network of N single-server queues with infinite buffer in
steady-state.

The Jackson theorem also applies to multi-server queues, but let us
consider single-server queues for now.

For queue i , i = 1, 2, 3, . . . ,N, the arrival process from the outside is
Poisson with rate ri . We allow for ri = 0 for some queues, but there must
be at least one queue j , such that rj > 0.

Once a customer completes its service in queue i , it continues to queue j
with probability Pij , i = 1, 2, 3, . . . ,N, or leaves the system with

probability 1−
∑N

j=1 Pij .

Notice that we allow for Pii > 0 for some queues. That is, we allow for
positive probability for customers to return to the same queue they just
exited.
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Jackson’s Theorem (Cont’d)

Let λj be the total arrival rate into queue j .

These λj values can be computed by solving the following set of equations.

λj = rj +
N∑
i=1

λiPij , j = 1, 2, 3, . . . ,N.

The above set of equations can be solved uniquely, if every customer
eventually leaves the network.

This means that the routing probabilities Pij must be such that there is a
sequence of positive routing probabilities and a final exit probability that
create an exit path of positive probability from each node.
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Jackson’s Theorem (Cont’d)

The service times at the jth queue are assumed exponentially distributed
with parameter µj .

They are assumed to be mutually independent and also independent of the
arrival process at that queue. Let ρj be defined by

ρj =
λj
µj

for j = 1, 2, 3, . . . ,N.

Assume that
0 ≤ ρj < 1 for j = 1, 2, 3, . . . ,N.

Before we proceeds with the derivation of the queueing performance
results, let us summarize the conditions of Jackson Theorem which will
henceforth be called Jackson’s Assumptions.
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Jackson’s Assumptions

1 The N-node network, where each node has infinite buffer queue, is
open (meaning that traffic can come from outside the network and
goes out from the network) and any external arrivals (arrivals from
outside the network) to node j follow a Poisson process with rate rj .
We allow some the external arrival rates to be zero, but we require
that at least one of them to one queue must be positive.

2 All service times are exponentially distributed random variables that
are independent of the arriving packets to queues and their service
times in previous queues.

3 The service discipline at all queues is FIFO.
4 A customer completing service at queue i will either move to queue j

with routing probability Pij (note that i can be equal to j , so we have

a self loop), or leave the system with probability 1−
∑N

j=1 Pij which
is positive for some queues.

5 All the queues must be stable - namely,
0 ≤ ρj < 1 for j = 1, 2, 3, . . . ,N.
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Jackson’s Theorem – Key Result

Let Qj be the queue-size of queue j . Then, based on Jackson’s
assumptions, according to Jackson’s Theorem, in steady-state, we have
that

P(Q1 = k1,Q2 = k2, . . . , QN = kN) = P(k1)P(k2)P(k3) · . . . · P(kN),

where P(ki ) = ρkii (1− ρi ), for i = 1, 2, 3, . . . ,N.
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Comments on Jackson’s Theorem

Although Jackson theorem assumes that the arrival processes from
the outside follow Poisson processes, it does not assume that the input
into every queue follows a Poisson processes.

Therefore, it does not assume that the queues are independent M/M/1 (or
M/M/k or M/M/∞) queues.

However, it turns out, according to Jackson theorem that the joint
steady-state probability distribution of the queue sizes of the N queues is
obtained as if the queues are independent M/M/1 (or M/M/k or
M/M/∞) queues.

This result applies despite the fact that the network is not acyclic in which
case we have demonstrated that the queues do not have to be M/M/1
queues.
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Implications of Jackson’s Theorem

Accordingly, the mean queue-size of the jth queue is given by

E [Qj ] =
ρj

1− ρj
.

The mean delay of a customer in the jth queue E [Dj ] defined as the time
from the moment the customer joins the queue until it completes service,
can be obtain by Little’s formula as follows.

E [Dj ] =
E [Qj ]

λj
.

Using Little’s formula, by considering the entire queueing network as our
system, we can also derive the mean delay of an arbitrary customer E [D]:

E [D] =

∑N
j=1 E [Qj ]∑N

j=1 rj
.
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Check for the Single Queue with Feedback Model

We now confirm the result of Jackson’s theorem for the case of a single
queue with feedback by deriving its queueing statistics use Jacson’s
theorem and an alternative way.

In the first way, we use Jackson’s Theorem, so we write

λ1 = λ+ pλ1

and we obtain

λ1 =
λ

(1− p)
.

Thus,

ρ =
λ

(1− p)µ
.
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Check for the Single Queue with Feedback Model (Cont’d)

In the second way, we consider an equivalent system with longer service
durations, we let the feedback arrivals have preemptive resume priority
over all other arrivals. This priority regime will not change the queue size
statistics. Now we have that the service time comprises a geometric sum
of exponential random variables which is also exponential.
Accordingly, the longer service durations are exponentially distributed with
mean service time

1

µ
× 1

(1− p)
=

1

µ(1− p)
.

Thus,

ρ =
λ

(1− p)µ
.

This is exactly the same result for ρ that we have obtained using Jackson’s
theorem. Since in M/M/1, the queue size distribution, and therefore E [Q]
are functions of only ρ, then they are equal for both cases. Then, the
mean delay is obtained according to Little’s formula by the ratio E [Q]/λ,
so the mean delay is also the same for both cases.
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Example of Two Queues with Feedback

Let us now consider a network of two-queue in series where all the traffic
that completes service in queue 1 enters queue 2 and some of the traffic in
queue 2 leaves the system while the rest enters queue 1.

This example is similar to the above mentioned example of a single queue
with feedback.

Using our notation, let the arrivals from the outside follow Poisson
processes with rates r1 = 10−8 and r2 = 0 and let µ1 = µ2 = 1.

Further assume that the probability that a customer that completes service
in queue 2 leaves the system is 10−3, so it enters queue 1 with probability
1− 10−3.
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Example of Two Queues with Feedback (cont’d)

Accordingly,
λ1 = r1 + (1− 10−3)λ2

and
λ2 = λ1.

Thus,
λ1 = 10−8 + (1− 10−3)λ1,

so
λ1 = λ2 = 10−5

and
ρ1 = ρ2 = 10−5,

so

E [Q1] = E [Q2] =
10−5

1− 10−5
≈ 10−5 + 10−10

and

E [D1] = E [D2] ≈ 10−5 + 10−10

10−5
= 1 + 10−5.
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Sanity Check for the Two Queues with Feedback Results

Recalling that the mean service time is equal to one, this means that small
queueing delay is expected.

This result makes sense intuitively.

Although the feedbacked traffic is more bursty than Poisson, but most of
the traffic here comprises the same packet that returns over and over
again and it is impossible for the same packet to wait in the queue for
itself to be served.

Because the arrival rate from the outside is very low, in rare occasion of a
new arrival from the outside there may be a minor queueing delay incurred.
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Extensions Beyond Jackson

For Jackson network, namely, an open network of M/M/1, M/M/k or
M/M/∞ queues described above, an exact solution is available.

However, in most practical cases, especially when we have to deal with the
so-called loss networks that comprise queues, such as M/M/k/k, where
traffic is lost, we have to make additional modelling assumptions and to
rely on approximations to evaluate performance measures, such as
blocking probability, or carried traffic.

One approximation is the so-called Reduced-Load Erlang Fixed-Point
Approximation which is reasonably accurate and useful for loss networks.
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Preliminaries

Consider a circuit switched network made of nodes (switching centers)
that are connected by links.

Each link has a fixed number of circuits.

In order to make a call between two nodes: source and destination, a user
should reserve a free circuit in each consecutive link of a path between the
two nodes.

Such reservation is successful if and only if there exists a free circuit on
each of the links of that path.

An important characteristic of a circuit-switched network is that once a
user makes a reservation for a connection between a source and a
destination the capacity for this connection is exclusively available for the
user of this connection and no other users can utilize this capacity for the
entire duration of this connection holding time.
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EFPA

To evaluate the probability that a circuit reservation is blocked, we first
make the following simplifying EFPA assumptions.

1 All the links are independent.

2 The arrival process of calls for each origin-destination pair is Poisson.

3 The arrival process seen by each link is Poisson.

Having made these assumptions, we now consider each link as an
independent M/M/k/k system for which the blocking probability is readily
available by the Erlang B formula. The assumption that the number of
circuits on each link is the same (equal to k) is made only for simplicity of
exposition, but it can be easily generalized, so it is not one of the three
key EFPA assumptions.

aj = total offered load to link j from all the routes that pass through link j .

Then the blocking probability on link j is obtained by

Bj = Ek(aj).
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EFPA (Cont’d)

Now that we have means to obtain the blocking probability on each link,
we can approximate the blocking probability of a call made on a given
route.

The route R is an ordered set of links.

B(R) = blocking probability of a call made on route R.

LR = the set of links in route R.

Accordingly, the route blocking probability is given by

B(R) = 1−
∏
i∈LR

(1− Bi ).
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EFPA (Cont’d)

A(R) = offered traffic on route R.

aj(R) = total traffic offered to link j from traffic that flow on route R.

Then, aj(R) can be computed by deducting from A(R) the traffic lost due
to congestion on links other than j . That is,

aj(R) = A(R)
∏

i∈LR ; i 6=j

(1− Bi ) for j ∈ LR ,

and aj(R) = 0 if j is not in LR .

This consideration to the reduced load due to blocking on other links gave
rise to the name reduced load approximation to this procedure.
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EFPA (Cont’d)

R = set of all routes.

Then the total offered traffic on link j is obtained by

aj =
∑
R∈R

aj(R).

These give a set of nonlinear equations that requires a fixed-point solution.
Notice that Erlang B is non-linear.

To solve these equations, we start with an initial vector of Bj values; for
example, set Bj = 0 for all j .

As we know the A(R)s, use the equation for aj(R) to obtain the aj(R)
values.
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EFPA (Cont’d)

Next, use the equation for aj to obtain the aj values, which can be
substituted in the equation for Bj to obtain a new set of values for the
blocking probabilities.

Then, the process repeats itself iteratively until the blocking probability
values obtained in one iteration is sufficiently close to those obtained in
the previous iteration.

Finally, having the resulted Bi s, the B(R) values for each route R are
obtained.
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EFPA (Cont’d)

The above solution based on the principles of the Reduced-Load and
Erlang Fixed-Point Approximations can be applied to many systems and
networks.

We have discussed an approach to evaluate blocking probability for circuit
switched networks under the so-called fixed routing regime, where a call
is offered to a route, and if it is rejected, it is lost and cleared from the
system.

There are, however, various other regimes involving alternate routing,
where rejected calls offered to a given route can overflow to other routes.

A similar Erlang fixed-point approximation can be used for circuit switching
with alternate routing, but this is beyond the scope of this course.
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Homework

Consider the 4-node ring network shown below.

11

4 3

2

Each of the four links has k = 20 circuits.

The traffic demands are as follows.

On Route: 4→ 1→ 2, the offered traffic is A(4, 1, 2) = 10 erlangs.
On Route: 4→ 1, the offered traffic is A(4, 1) = 11 erlangs.
On Route: 1→ 2, the offered traffic is A(1, 2) = 9 erlangs.
On Route: 2→ 3→ 4, the offered traffic is A(2, 3, 4) = 9 erlangs.
On Route: 2→ 3, the offered traffic is A(2, 3) = 12 erlangs.
On Route: 3→ 4, the offered traffic is A(3, 4) = 11 erlangs.

Find the blocking probability on routes 4→ 1→ 2, 4→ 1, 2→ 3, and
2→ 3→ 4.
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Guide

Observe that the traffic on the first three routes is independent of the
traffic on the last three routes. The two sets of routes use different links,
so they can be treated separately as two separate networks.
We use the notation [i , j ] to denote a link between the end-nodes i and j .

We initially assume B[i ,j] = 0 for all four links [1,2], [2,3], [3,4], and [4,1].

The First Three Routes

Let’s focus first on the traffic on the first three routes that only use only
the links [4,1] and [1,2].

Because traffic in the routes (4,1) and (1,2) use a single link, for both,
there is no loss due to blocking on other links. Therefore, we always have:

a[4,1](4, 1) = 11 erlangs and a[1,2](1, 2) = 9 erlangs.
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Guide (cont’d)

However, for the route (4,1,2) this is not the case, and in general, we will
need to take account of the reduced load. Only in the first step where all
the Bjs are equal to zero, we have
a[4,1](4, 1, 2) = a[1,2](4, 1, 2) = 10 erlangs.

Next, we update the blocking probabilities in links [4,1] and [1,2] and
obtain
B[4,1] = E20(11 + 10) = E20(21) = 0.184111065
B[1,2] = E20(9 + 10) = E20(19) = 0.133761441

Now the reduced load is taken into account for the route (4,1,2), and we
obtain:
a[4,1](4, 1, 2) = 10× (1− 0.133761441) = 8.662385587
a[1,2](4, 1, 2) = 10× (1− 0.184111065) = 8.158889352

Updating again the blocking probabilities in links [4,1] and [1,2], we obtain
B[4,1] = E20(11 + 8.662385587) = E20(19.66238559) = 0.150375622
B[1,2] = E20(9 + 8.158889352) = E20(17.15888935) = 0.089462624
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Guide (cont’d)

Updating the loads, we obtain
a[4,1](4, 1, 2) = 10× (1− 0.089462624) = 9.105373758
a[1,2](4, 1, 2) = 10× (1− 0.150375622) = 8.496243779
Updating the blocking probabilities, we obtain
B[4,1] = E20(11 + 9.105373758) = E20(20.105373758) = 0.161552648
B[1,2] = E20(9 + 9.105373758) = E20(18.10537376) = 0.111754835
Updating the loads, we obtain
a[4,1](4, 1, 2) = 10× (1− 0.111754835) = 8.882451648
a[1,2](4, 1, 2) = 10× (1− 0.161552648) = 8.384473517
Updating the blocking probabilities, we obtain
B[4,1] = E20(11 + 8.882451648) = E20(19.882451648) = 0.155924918
B[1,2] = E20(9 + 8.384473517) = E20(17.384473517) = 0.094653631
Updating the loads, we obtain
a[4,1](4, 1, 2) = 10× (1− 0.094653631) = 9.053463687
a[1,2](4, 1, 2) = 10× (1− 0.155924918) = 8.440750821
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Guide (cont’d)

Updating the blocking probabilities, we obtain
B[4,1] = E20(11 + 9.053463687) = E20(20.053463687) = 0.160241842
B[1,2] = E20(9 + 8.440750821) = E20(17.440750821) = 0.095961813
Updating the loads, we obtain
a[4,1](4, 1, 2) = 10× (1− 0.095961813) = 9.040381865
a[1,2](4, 1, 2) = 10× (1− 0.160241842) = 8.397581581
Updating the blocking probabilities, we obtain
B[4,1] = E20(11 + 9.040381865) = E20(20.040381865) = 0.159911528
B[1,2] = E20(9 + 8.397581581) = E20(17.397581581) = 0.094957879
Updating the loads, we obtain
a[4,1](4, 1, 2) = 10× (1− 0.094957879) = 9.050421212
a[1,2](4, 1, 2) = 10× (1− 0.159911528) = 8.400884722
Updating the blocking probabilities, we obtain
B[4,1] = E20(11 + 9.050421212) = E20(20.050421212) = 0.160165019
B[1,2] = E20(9 + 8.400884722) = E20(17.400884722) = 0.095034591
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Guide (cont’d)

Reasonable accuracy has been achieved for B[4,1] and B[1,2].

To approximate the route blocking probabilities for routes (4,1) and (1,2),
they are B[4,1] and B[1,2], respectively.

For route (4,1,2), the blocking probability approximation is
1− (1− B[4,1])(1− B[1,2]).

The Remaining three Routes

Now repeat the procedure to approximate the blocking probability for the
routes (2,3), (3,4) and (2,3,4).

Can you try writing a computer program to do it?
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Performance Modeling Without Mobility

Assume that cell i of a cellular network has fi channels and the traffic
offered to it is given by Ai Erlangs, and follows a Poisson process for the
call arrivals, with general distribution of call holding time. If there is no
mobility of calls, then each cell operates independently, and the call
blocking probability in cell i , denoted Bi , can be obtained by the Erlang B
formula as follows:

Bi = Efi (Ai ) =
Afi
i /fi !∑fi

j=0 A
j
i/j!

.

As mentioned, if fi is too large, the Erlang B recursion can be used.
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Performance Modeling with mobility

When mobility is considered, the interaction between neighbouring cells
needs to be taken into account.

Teletraffic Analysis of Mobile Networks'

&

$

%

Traffic Performance with Mobility

When mobility is considered, the interaction between neighbouring

cells needs to be considered.

cell i

handover arrival rate

new call arrival rate call completion rate

handover rate

Figure 1: Traffic rates for handoff analysis.
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Figure 1: Traffic rates for handoff analysis.
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Performance Modeling with Mobility (Cont’d)

Channel holding time

Define the following random variables:

Tµ = the duration of a new call = call holding time
Tδ = the time for which a mobile resides in a cell (cell dwelling time)
Th = the channel holding time

A channel becomes free (is released) at cell i because of either:

1 the call has been completed normally, or

2 it is handed over to another cell.

Th = min[Tµ,Tδ].
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Performance Modeling with mobility (Cont’d)

Channel holding time (Cont’d)

Assuming that both Tµ and Tδ are exponentially distributed with
parameters µ and δ, respectively. Then,

E [Tµ] =
1

µ
,

and

E [Tδ] =
1

δ
.

Also, under this assumption, since Th is the minimum of two exponential
random variables, Th is exponentially distributed with parameter µ+ δ.

Therefore,

E [Th] =
1

µ+ δ
.
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Performance Modeling with Mobility (Cont’d)

There are two approaches:

Erlang fixed-point approximation (EFPA)
Markov chain simulation

Under EFPA, we do not distinguish between blocking of new calls and
dropping of handover calls, but in the simulations we do make this
distinction.

We begin with EFPA.

Define the following parameters:

Arrival rate of new calls to cell i λ(i)
Total call arrival rate to cell i (new calls θi
plus handoff calls)
Probability that a call will handover ph
Probability of handover from cell i to cell j pij
Blocking probability for new and handoff calls at Bi

cell i (assuming they are equal)
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EFPA – Derivation of ph

ph is the probability that a call will handover to another cell. In other
words, ph is the probability that the cell dwelling time is shorter than the
call holding time.

ph = P(Tδ < Tµ)

We assumed that Tδ and Tµ are exponentially distributed random
variables with parameters δ and µ, respectively.

Therefore, ph is the probability of one exponentially distributed random
variable Tδ is the minimum of two exponential random variables Tδ and
Tµ, and according to our previous derivation:

ph =
δ

δ + µ
.

c© Sammy Chan and Moshe Zukerman Analysis and Simulations of Cellular Mobile Networks (It includes material on mobile network analysis from slides of the course ”Mobile Data Networks” by S. Chan, and on mobile network simulations from Section 19.3 of the book “Introduction to Queueing Theory and Stochastic Teletraffic Models” by M. Zukerman.)April 8, 2023 7 / 31



EFPA – Probability of handover from cell i to cell j

According to our model, the event that a call will handover from cell i to
cell j requires two events to occur:

1 the call will handover out from cell i , and

2 given that the cell handover out of cell i , it will handover to cell j .

Therefore,

pij = phP(i , j),

where
P(i , j) is the probability of a handoff from cell i to cell j given that the call
will handoff.

In a homogeneous network with hexagonal cells, each cell has six
neighbors, so P(i , j) = 1/6.
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EFPA – Total Arrival Rate

The total arrival rate is given by the sum of the arrival rate of new
calls and handover calls

the rate of incoming calls can be considered to be the total rate of
calls offered to other cell, times the probability that they will not be
blocked there, times the probability that a call will handover to cell i ,
i.e., the total arrival rate is

θi = λ(i) +
∑

j∈Neib(i)

(1− Bj)θjpji i = 1, 2, . . . ,m, (1)

where Neib(i) is the set of neighbours of cell i and m is the total
number of cells in the networks.
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EFPA – How to Find θi and Bi?

Using the approximation that the blocking probability Bi , at cell i is
given by the Erlang B function, i.e.,

Bi = Efi (θi/(µ+ δ)), i = 1, 2, . . . ,m, (2)

where Ek(A) is the Erlang B function for a traffic of A erlangs offered
to and Erlang B system with k channels.

For a cellular network of m cells, this model gives two sets of
m-dimensional nonlinear equations (Equations (1) and (2)) which can
be solved numerically.

c© Sammy Chan and Moshe Zukerman Analysis and Simulations of Cellular Mobile Networks (It includes material on mobile network analysis from slides of the course ”Mobile Data Networks” by S. Chan, and on mobile network simulations from Section 19.3 of the book “Introduction to Queueing Theory and Stochastic Teletraffic Models” by M. Zukerman.)April 8, 2023 10 / 31



EFPA – How to find θi and Bi? (Cont’d)

Method of Successive Substitution
1 Guess an initial set of θi .

2 Substitute them into Equation (2) to obtain a set of Bi .

3 Substitute θi and Bi into Equation (1) to obtain a new set of θi .

4 Check if the relative difference between the old and new set of θi is
smaller than a tolerance limit ε.

5 If yes, stop. Otherwise, repeat from Step (1) using the new set of θi .
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EFPA – Overall average blocking probability in a cell

To obtain the estimation for the overall average blocking probability P(B)
(of new and handoff calls) in a cell, we weighted average the different Bi

values (the blocking probability in individual cells) by the corresponding
arrival rates as follows.

P(B) =

∑m
1 Biθi∑m

1 θi
.

Be reminded again that the overall blocking probability P(B), includes
blocking of new calls and dropping of handover calls.
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EFPA – Blocking or dropping of individual calls

Consider a call made through a mobile station that from its starting time
until its completion, the mobile station visits (or plan to visit) z cells,
starting in cell i1 then it continues to cell i2, and then visits cells
i3, i4 . . . , iz in that order. (Note that we allow visits to the same cell, e.g.,
i2 = i4, but consecutive cells are different.)
To approximate its blocking probability, we assume independence between
the cells, and we notice that the call will be successful with probability:

P(successful) = (1− Bi1)(1− Bi2)(1− Bi3) · · · (1− Biz ) =
iz∏

j=i1

(1− Bj).

Then the approximate probability of blocking or dropping of the call is:

P(blocking or dropping) = 1− P(successful) = 1−
iz∏

j=i1

(1− Bj).
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Markov chain simulation of a mobile cellular network

Again, we model a mobile cellular network as a network of Erlang B
systems assuming:

1 the number of channels in each cell is fixed and equal to k,

2 new call generations in each cell follows a Poisson process,

3 call holding times are exponentially distributed,

4 times until handover occur in each cell are also exponentially
distributed.

In the following we describe how to simulate such a network. This is also
available in Section 19.4 in classnotes.pdf
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Markov chain simulation of a mobile cellular network
(Cont’d)

Variables and input parameters

m = number of cells (Erlang B Systems) in the network
Q(i) = number of calls in progress (queue size) in cell i
Bp = estimation for the blocking probability
Na(i) = number of call arrivals counted so far in cell i
Nb(i) = number of blocked new calls (arrivals) counted so far in cell i
Nh(i) = number of call handovers counted so far into cell i
Nd(i) = number of dropped calls that tried to handover so far into cell i
MAXNa = maximal number of call arrivals - used as a stopping criterion
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Markov chain simulation of a mobile cellular network
(Cont’d)

Variables and input parameters (Cont’d)

µ = 1/(the mean call holding time)
λ(i) = arrival rate of new calls in cell i
P(i , j) = the probability of a handoff from cell i to cell j given that the
call will handoff
δ(i) = handover rate in cell i per call = 1/(mean time a call stays in cell i
before it leaves the cell)
PB = Blocking probability estimation
PD = Dropping probability estimation of dropped handover calls
Neib(i) = the set of neighboring cells of cell i
|Neib(i)|= number of neighboring cells of cell i
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Markov chain simulation of a mobile cellular network
(Cont’d)

How to write the simulation

We will repeatedly consider R(01) a uniform U(0, 1) random deviate. A
new value for R(01) is generated every time it is called.
To know if the next event is an arrival, we use the following IF statement.
If

R(01) ≤
∑m

i=1 λ(i)∑m
i=1 λ(i) +

∑m
i=1 Q(i)µ+

∑m
i=1 Q(i)δ(i)

then the next event is an arrival. Else, to find out if it is a departure, i.e.,
a call termination in its own cell, we use the following IF statement (using
the same R(01) value as before). If

R(01) ≤
∑m

i=1 λ(i) +
∑m

i=1 Q(i)µ∑m
i=1 λ(i) +

∑m
i=1 Q(i)µ+

∑m
i=1 Q(i)δ(i)

then the next event is a departure; else, it is a handover.
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Markov chain simulation of a mobile cellular network
(Cont’d)

How to write the simulation (Cont’d)

If the next event is an arrival, we need to know in which of the m cells it
occurs. To find out, we use the following loop.
For i = 1 to m, do: If

R(01) ≤
∑i

j=1 λ(j)∑m
j=1 λ(j)

,

stop the loop. The arrival occurs in cell i and we increment the total
number of arrivals in cell i so far by Na(i) = Na(i) + 1 and if Q(i) < k
then Q(i) = Q(i) + 1, else the number of lost calls needs to be
incremented, namely, Nb(i) = Nb(i) + 1. (For all i values in the above
loop, make sure that you use the same R(01) value.)
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Markov chain simulation of a mobile cellular network
(Cont’d)

How to write the simulation (Cont’d)

Now we check if this arrival is the MAXNa arrival. If it is then we end the
simulation. In particular, if

m∑
j=1

Na(j) ≥ MAXNa,

the simulation ends, and we compute the blocking probability as follows.

PB =

∑m
i=1 Nb(i)

MAXNa
.

In a similar way we can compute The dropping probability of handover
calls as follows.

PD =

∑m
i=1 Nd(i)∑m
i=1 Nh(i)

.
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Markov chain simulation of a mobile cellular network
(Cont’d)

How to write the simulation (Cont’d)

If the next event is a departure, we need to know in which of the m cells it
occurs. To find out we use the following loop.
For i = 1 to m, do: If

R(01) ≤
∑i

j=1 Q(j)µ∑m
j=1 Q(j)µ

=

∑i
j=1 Q(j)∑m
j=1 Q(j)

.

Then stop the loop. The departure occurs in Cell i , so Q(i) = Q(i)− 1.
(Again, for all i values in the above loop, use the same R(01) value.) Note
that we do not need to verify that Q(i) > 0 before decrementing it
(why?). This is because if Q(i) = 0 the above loop will not generate a
departure in Cell i .
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Markov chain simulation of a mobile cellular network
(Cont’d)

How to write the simulation (Cont’d)

If the next event is a handover, we need to know from which of the m cells
it handovers out of. To find it out, we use the following loop.
For i = 1 to m, do: If

R(01) ≤
∑i

j=1 Q(j)δ(j)∑m
j=1 Q(j)δ(j)

.

Then, stop the loop. The handover occurs out of cell i , so
Q(i) = Q(i)− 1. Note that again we do not need to verify that Q(i) > 0.
(Again, for all i values in the above loop, use the same R(01) value.)
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Markov chain simulation of a mobile cellular network
(Cont’d)

How to write the simulation (Cont’d)

Then, to find out into which cell the call handover in, we use the following:
For j = 1 to |Neib(i)|, j ∈ Neib(i), do: If

R(01) ≤
∑j

n=1 P(i , n)∑|Neib(i)|
n=1 P(i , n)

=

j∑
n=1

P(i , n), n ∈ Neib(i),

the call handovers into cell j . (Again, for all j values in the above loop,
use the same R(01) value.) Then, increment Nh(j). If cell j is full, namely
Q(j) = k, the handover is dropped, so increment also Nd(j). If Q(j) < k ,
increment Q(j), i.e, Q(j) = Q(j) + 1.
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Markov chain simulation of a mobile cellular network
(Cont’d)

Explanation how we choose the next event

We use the following probabilities:

the probability that the next event is an arrival, denoted Parr ;

the probability that the next event is a departure, denoted Pdep;

the probability that the next event is a handover, denoted Pho .

They are given by

Parr =

∑m
i=1 λ(i)∑m

i=1 λ(i) +
∑m

i=1 Q(i)µ+
∑m

i=1 Q(i)δ(i)
.

Pdep =

∑m
i=1 Q(i)µ∑m

i=1 λ(i) +
∑m

i=1 Q(i)µ+
∑m

i=1 Q(i)δ(i)
.

Pho =

∑m
i=1 Q(i)δ(i)∑m

i=1 λ(i) +
∑m

i=1 Q(i)µ+
∑m

i=1 Q(i)δ(i)
.
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Markov chain simulation of a mobile cellular network
(Cont’d)

Explanation (Cont’d)

Then, generating R(01), the condition for an arrival to be the next event
is R(01) ≤ Parr .
If this condition does not hold, i.e., R(01) > Parr , then, the condition for a
departure to be the next event is R(01) ≤ Parr + Pdep.
Then, if this condition does not hold, i.e., R(01) > Parr + Pdep, then, the
next event must be a handover.
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Markov chain simulation of a mobile cellular network
(Cont’d)

Homework
Consider the 49-cell cellular network model with wrapped-around design
depicted in Figure 2 (see next slide). Choose your own input parameters
for the number of channels per cell, arrival rates and mean holding times.
Use a Markov-chain simulation to approximate the overall blocking and
dropping probabilities in this network.

For the same 49-cell network, obtain the blocking probability using EFPA.

Compare the results of the two approaches for a range of parameter
values. Notice that the simulation provides separate results for the
blocking and the dropping probabilities, while the EFPA provides a result
for the combined blocking/dropping probability. You will need to make
another step in the simulation to obtain the combined probability in order
to make the two approaches comparable. Discuss and explain the
differences in the results between the two approaches.
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Figure 2: 49-cell hexagonal configuration network model with wrapped-around
design.

Source: Figure 2 in J. Wu, E. W. M. Wong, J. Guo, and M. Zukerman, ”Performance Analysis of Green Cellular Networks with Selective Base-Station

Sleeping,” Performance Evaluation, vol. 111, pp. 17-36, May 2017.
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Channel Reservation – a single cell model

If a new call is unsuccessful due to blocking, that is not as bad as a
handoff call being dropped. Therefore, handoff calls should have a higher
priority to use the channels.
One possible way to assigning priority to handoff calls is to reserve some
channels exclusively for handoff calls, as shown in Fig. 3.

Figure 3: System model with reserved channels for handoff calls.
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Channel Reservation – a single cell model (Cont’d)

There are totally S channels, SR channels are reserved exclusively for
handoff calls. Thus,

Sc = S − SR channels are shared by both types of calls.
λO is the mean arrival rate of new calls.
λH is the mean arrival rate of handoff calls.
1/µ is the mean duration of a call.
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Channel Reservation – a single cell model (Cont’d)

a Markov chain model

Figure 4: State transition diagram for the channel reservation model.

To simplify the analysis, assume that λH is known and given.
The steady-state equations are:{

iµπi = (λO + λH)πi−1, 0 ≤ i ≤ Sc
iµπi = λHπi−1, Sc < i ≤ S

(3)

where πi is the steady state probability of having i channels busy,
i = 0, 1, 2, . . . ,S .
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Channel Reservation – a single cell model (Cont’d)

Steady-state Probabilities
From (3), πi can be expressed as π0:

πi =


(λO+λH)i

i!µi π0, 0 ≤ i ≤ Sc
(λO+λH)Sc λi−Sc

H

i!µi π0, Sc < i ≤ S
(4)

Then, using the normalization condition
∑S

i=0 πi = 1, we have

π0 =

 Sc∑
i=0

(λO + λH)i

i !µi
+

S∑
i=Sc+1

(λO + λH)Scλi−ScH

i !µi

−1

(5)

Once π0 is found, all πi are solved.
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Channel Reservation – a single cell model (Cont’d)

Blocking Probabilities
Since a new call is blocked when Sc or more channels are occupied, the
blocking probability B0 for a new call is given by

BO =
S∑

i=Sc

πi (6)

On the other hand, a handoff call can access all channels, it is blocked
only if all S channels are occupied. Thus, blocking probability or the
forced termination probability of a handoff call is given by

BH = πS =
(λO + λH)ScλS−ScH

S!µS
π0 (7)
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