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Text/Reference Books

Moshe Zukerman, Introduction to Queueing 
Theory and Stochastic Teletraffic Models 
(Chapter 1)
http://www.ee.cityu.edu.hk/~zukerman/classnotes.pdf

D. Bertsekas and J. N. Tsitsiklis, Introduction to 
Probability, Athena Scientific, Belmont, 
Massachusetts 2002.

S. M. Ross, A first course in probability, 
Macmillan, New York, 1976.
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Events, Sample Space, 
and Random Variables
• Consider an experiment (e.g. tossing a coin, or rolling 
a die).
• Sample space - set of all possible outcomes.
• Event - a subset of the sample space.
• example: experiment consisting of rolling a die once. 
Sample space = {1, 2, 3, 4, 5, 6} 
Possible events: 
• {2, 3}, 
• {6}, 
• empty set {} (often denoted by Φ)
• the entire sample space {1, 2, 3, 4, 5, 6}
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Events are called mutually exclusive if 
their intersection is the empty set. 

A set of events is exhaustive if its union is equal to the 
sample space.

Example 1: tossing a coin only once 
The events {H} (Head) and {T} (Tail) are both 
mutually exclusive and exhaustive. 
What is the state space (the set) of all possible events 
in this case?

Example 2: rolling a die only once
The events {1}, {2}, {3}, {4}, {5}, and {6} are both 
mutually exclusive and exhaustive. 
The events {4}, {5}, and {6} are mutually exclusive but 
are not exhaustive. 
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A random variable is a real valued function defined on 
the sample space. 

This function X = X(ω) assigns a number to each 
outcome ω of the experiment.

Example: tossing a coin experiment
X = 1  for Head {H} 
X = 0 for Tail {T} 

Note that the function X is deterministic (not random), 
but the ω is unknown before the experiment is 
performed. Therefore X(ω)  is called a random variable.
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Probability, Conditional Probability 
and Independence
Consider a sample space S. Let A be a subset of S. 
The probability of A is the function on S and all its 
subsets, denoted P(A) that satisfies the following 
three axioms:

3. The probability of the union of mutually exclusive 
    events is equal to the sum of the probabilities of 
    these events.
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One intuitive interpretation of probability of 
an event is its limiting relative frequency
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An example of a Histogram with 5 ranges 
(bins) and each range is 10 cm. 
In every range (bin), 10 ni values are added up. 
In this case, N = 93 people.
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Limiting Relative Frequency (continued)
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The Average Height
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Conditional Probability
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BA A∩B
S

“Given event B” is equivalent to “B becomes 
the sample space”.
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we obtain

Example: consider rolling a die and B={1,2,3} 
(B = outcome is 1 or 2 or 3), and A={1}, then

Now, since
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Events A and B are said to be independent 
if and only if 

Equivalent definitions are: 

Independence between two events means that if one 
of them occurs, the probability of the other to occur is 
not affected. 

Homework: Show the equivalence between these 
three relationships.
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B1 B2 B3 B4

A
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Other names for Bayes’ Theorem: Bayes' law 
and Bayes' rule

Homework:   Make sure you know how to derive the 
law of total probability and Bayes’ theorem. 
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For the case of Rolling a die
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A random variable is called discrete if it takes at 
most a countable number of possible values. 

A continuous random variable takes an uncountable 
number of possible values. 

For discrete random variables   
the joint probability function is: 

and the probability function of a single discrete 
random variable is:
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Conditional Probability for 
Discrete Random Variables

Because of the above and since 

we obtain

The implication is that the event {Y=y} is the new 
sample space and X has a legitimate distribution 
function in this new sample space.

is another version of the law of total probability.
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Example

You roll a fair 6-side die twice. X is a result of the 
first roll and Y is the result of the second roll. 
Define U = max(X,Y) and V = min(X,Y).

Find: P(U=5|V=3)
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Convolution
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Question

Explain the last equation of convolution 
using the Law of Total Probability.
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Now consider k random variables  

The convolution of the k probability functions is:  
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Some discrete random variables

2. Geometric

1. Bernoulli
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The number of  successes  in n independent Bernoulli trials

3. Binomial

Can be used to model users activity.

A user is active with probability p and non-active with 
probability 1-p.

X = i  is the event where i users are active. 
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How to compute these values?

Use Recursion and start from values around λ.

Set arbitrary initial value then normalize.

4. Poisson 
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Poisson-Binomial Relationship
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Sum of two Poisson 
Random variables
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5. Pascal 
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6. Discrete Uniform  
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Continuous Random Variables and Distributions                               
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Example
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Please complete all steps in the following.
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Convolution of continuous random variables
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Convolution of k continuous random variables
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Some Continuous Random Variables
1. Uniform      (with parameters a,b)
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Inverse transform sampling
Using uniform (0,1) deviates to generate sequence 

of random deviates of any distribution
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1 2

Convolution of two independent 
uniform (0,1) random variables

1
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2. Exponential      (with parameter µ)
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Example
Show how to apply the Inverse transform sampling 

to generate exponential deviates.

Guide
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The minimum of two independent 
exponential random variables
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Competition between two independent 
exponential random Variables
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Homework: 
Observe the following behavior of the 
Poisson probability function and provide 
explanation.  
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Poisson Probability function with λ= 10
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Poisson Probability function with λ= 100
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Poisson Probability function with λ= 1000
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Poisson Probability function with λ= 10000
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