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Events, Sample Space,
and Random Variables

* Consider an experiment (e.g. tossing a coin, or rolling
a die).

« Sample space - set of all possible outcomes.

* Event - a subset of the sample space.

« example: experiment consisting of rolling a die once.
Sample space ={1, 2, 3, 4, 5, 6}

Possible events: V

* {2, 3},

* {6},

- empty set {} (often denoted by @)

* the entire sample space {1, 2, 3, 4, 5, 6}
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Question

Consider the experiment to be tossing a coin. What is
the Sample Space? What are the events associated with

this Sample Space?
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Question

Consider the experiment to be tossing a coin. What is
the Sample Space?” What are the events associated with
this Sample Space?

Answer

Notice that although the sample space includes only the
outcome of the experiments which are Head (H) and
Tail (T), the events associated with this samples space
includes all subsets of the state space which include also
the empty set which in this case is the event {H N T}
and the entire sample space which in this case is the

event {H UT}.
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Events are called mutually exclusive if
their intersection is the empty set.

A set of events is exhaustive if its union is equal to the
sample space.

Example 1: tossing a coin only once

The events {H} (Head) and {T} (Tail) are both
mutually exclusive and exhaustive.

What is the state space (the set) of all possible events
In this case?

Example 2: rolling a die only once V
The events {1}, {2}, {3}, {4}, {5}, and {6} are both
mutually exclusive and exhaustive.

The events {4}, {5}, and {6} are mutually exclusive but
are not exhaustive.




© Zukerman 2014-2015

A random variable is a real valued function defined on
the sample space.

This function X = X(w) assigns a number to each
outcome w of the experiment.

Example: tossing a coin experiment
X =1 for Head {H}
X =0 for Tail {T}

Note that the function X' is deterministic (not random),
but the w is unknown before the experiment is
performed. Therefore X(w) is called a random variable.
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If X is a random variable then Y = ¢g(X) for some
function g is also a random variable.

Examples:
Y = cX for some scalar c is a random variable.
Y = X" for some integer n is a random variable.

If Xy, X9, X3, ..., X,, is a sequence of random
variables, then
Y =>", X; is also a random variable.
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Probability, Conditional Probability
and Independence

Consider a sample space S. Let A be a subset of S.
The probability of A is the function on S and all its
subsets, denoted P(A) that satisfies the following

three axioms:
1. 0 < P(A) <1

2. P(S) =1

3. The probability of the union of mutually exclusive
events is equal to the sum of the probabilities of

these events.
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Questions

Question 1

Consider again the experiment to be tossing a coin.
Assume that P(H) = P(T) = 0.5. Illustrate each of the
Probability Axioms for this case.

10
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One intuitive interpretation of probability of
an event is its limiting relative frequency

Let an outcome of an experiment be a person height.
Let p; be the probability that a person’s height is 7 cm.
Consider a sample of N people.

Each one of them reports his/her height, rounded to the
nearest cm.

Let n; be the number of people reported a height of 7 cm.
These n; values can be graphically presented as what is
known as a histogram.

An example of a histogram is shown in the following
ograph.

11
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An example of a Histogram with 5 ranges
(bins) and each range is 10 cm.

In every range (bin), 10 n; values are added up.
In this case, N =93 people.

12
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Limiting Relative Frequency (continued)

The relative frequency n;/N approximates p;.

This approximation becomes more and more accurate
as IV increases.

This approximation is consistent with the requirement

Zpi = 1.

1

If we set p; = n;/N, then since ) .n; = N, we obtain

qu: = 1.

13
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The Average Height

N
For large N, we set p; = n;/N, then,

The average height =

The average height = Z 1D; .

This 1s related to the well-known

Law of Large Numbers

14
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Conditional Probability

The conditional probability of event A given
event B 1s denoted by

P(A| B)

15
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A cans 8

S

“Given event B” is equivalent to “B becomes

the sample space”.

P(A| B) =

P(ANB)

P(B)

16
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Example: consider rolling a die and B={1,2,3}
(B = outcome is 1 or 2 or 3), and A={1}, then

P(A‘B):P(AQB):ﬁ:

1
P(B) 1/2 = 3

Now, since
P(ANB) = P(BNA) = P(B| A)P(A)
we obtain

P B — PBLAPA)

\
P(B)

17
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Events A and B are said to be iIndependent
if and only if P(A| B):P(A).

Equivalent definitions are:
P(AN B) = P(A)P(B)

P(B| A) = P(B).

Independence between two events means that if one
of them occurs, the probability of the other to occur is
not affected.

Homework: Show the equivalence between these
three relationships.

18
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By, By, B3, ..., B, are mutually exclusive

and exhaustive events in S. A is another
event in S. Then, A =J,_,(AN B;)

Notice that (AN By),(ANBy),--- ,(ANB,)
are also mutually exclusive (but not
exhaustive).

19
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Considering the 3rd probability axiom, we obtain:

P(A) = >.i— P(AN By),

Recall, P(AN B) = P(A | B)P(B),
law of total probability:
P(A) = >_i_, P(A| B;) x P(B;)
Bayes’ theorem:

P(A|B,)P(B1)
P(Bi | A) = S P(A|[B)xP(B;)’

20
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P(B; | A) is the posterior probability of B;.

P(By) is the prior probability of Bj.

Other names for Bayes’ Theorem: Bayes' law
and Bayes' rule

Homework: Make sure you know how to derive the
law of total probability and Bayes’ theorem.

21



© Zukerman 2014-2015

Question 2

Now consider an experiment involving three coin tosses. The
outcome of the experiment is now a 3-long string of Heads
and Tails. Assume that all coin tosses have probability 0.5,
and that the coin tosses are independent events.

1. Write the sample space where each outcome of the ex-
periment is an ordered 3-long string of Heads and Tails.

2. What is the probability of each outcome?

3. Consider the event
A = {FEzactly one head occurs}.
Find P(A) using the additivity axiom.

Partial Answer: P(A) =1/84+1/8+1/8 =3/8.

22
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Question 3

Now consider again three coin tosses. Find
the probability P(A | B) where A and B are
the events:

A = more than one head came up
B = 1st toss is a head.

Guide:

P(B) =4/8; P(AN B) = 3/8;
P(A| B) = (3/8)/(4/8) = 3/4.

23
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Question 4

Consider a medical test for a certain disease. The
medical test detects the disease with probability 0.99
and fails to detect the disease with probability 0.01. If
the disease is not present, the test indicates that it is
present with probability 0.02 and that it is not present
with probability 0.98. Consider two cases:

Case a: The test is done on a randomly chosen person
from the population where the occurrence of the disease
is 1/10000.

Case b: The test is done on patients that are referred
by a doctor that have a prior probability (before they
do the test) of 0.3 to have the disease.

Find the probability of a person to have the disease if
the test shows positive outcome in each of these cases.

24



Guide:

A = person has the disease.
B = test is positive.

A = person does not have the disease.

B = test 1s negative.

We need to find P(A | B).

Case a:

We know: P(A) = 0.0001.

P(A) = 0.9999.

P(B| A)=0.99.

P(B | A) = 0.02. By the law of total probability:
P(B) = P(B| A)P(A)+ P(B | A)P(A).

P(B) =0.99 x 0.0001 + 0.02 x 0.9999 = 0.020097.
Now put it all together and use Bayes’ Theorem
to obtain:

P(A | B) = 0.004926108.

Case b:

P(A)=0.3.

Repeat the previous derivations to show that for
this case P(A | B) = 0.954983923.

© Zukerman 2014-2015
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Question 5

In a multiple choice exam, there are 4 an-
swers to a question. A student knows the
right answer with probability 0.8 (Case 1),
with probability 0.2 (Case 2), and with prob-
ability 0.5 (Case 3). If the student knows the
answer s/he answers correctly with probabil-
ity 1. However, if the student does not know
the answer s/he always guesses with proba-
bility of success being 0.25. Given that the
student marked the right answer, what is the
probability he/she knows the answer.

26
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Guide:

A = Student knows the answer.
B = Student marks correctly.

A = Student does not know the answer.

B = Student marks incorrectly.

We need to find P(A | B).

Case 1: We know: P(A)=0.8. P(A) =0.2. P(B| A) =1.
P(B | A) = 0.25. By the law of total probability:

P(B) = P(B| A)P(A) + P(B | A)P(A).
P(B)=1x0.840.25x 0.2 =0.85.

Now put it all together and by Bayes’ Theorem obtain:
P(A| B) =0.941176471.

Case 2: Repeat the previous derivations to obtain:
P(A)=0.2. P(B)=04. P(A| B) =0.5.

Case 3: Repeat the previous derivations to obtain:

P(A) =0.5. P(B) =0.625. P(A| B) = 0.8.

27
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Probability and Distribution Functions

X is a random variable (r.v.).

x 1s a number that represents an outcome ot
an experiment.

{X =z} is an event.

Px(z) = P(X = x) is a probability function.
Other names: probability distribution func-
tion, probability mass function.

Fx(z) = P(X < z) is the cumulative distri-
bution function (CDF) of r.v. X.

28
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Rolling a die &

Px(z) = P(X = x) Fx(z)=P(X <x)
A A
6/6 | 6/6 [ o
5/6 | 5/6 [
416 | 416 |~
36 | 36 [
216 | 216 I
Sl 0 I I O P W o
1 2 3 4 5 6 1 2 3 4 5 6

29



Fx(z) = P(X > ) is the
complementary distribution function of
random variable X

For the case of Rolling a die ﬁ/
Fx(z) = P(X > x)

5/6 [
36 [ e

30
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For every r.v. X and any x € R,
Fx(ﬂf) —|— Fx(x) — 1
Notation: A, B=ANDAB

Fx, .x,(x1, ..,x,) =P(Xy <z, ..., Xy <2p).

is the joint distribution function of the random variables
Xy, X9, ..., X,.

Then
FX1($1) = Fxl, Xo, ..., Xn(xla oQy vy 00)-

31
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A random variable is called discrete if it takes at
most a countable number of possible values.

A continuous random variable takes an uncountable
number of possible values.

For discrete random variables X;, X5, ..., X,
the joint probability function is:

le, Xo, ..., Xn(l’h L2y veey fn) — P(X1 =11, Xo=1T9, ..., Xy = 33n)

and the probability function of a single discrete
random variable is:

PXl (ﬂjl) — 2332 “ .. Zaj‘n PXl, XQ, ey Xn (:El, .:UQ, ceey LIZ‘n)

32
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Conditional Probability for
Discrete Random Variables

P(X=zY= Px vy (z,
Pyy(z|y) =P(X =2 |Y =y) = 2052y - Borldy)

Because of the above and since Py (y) = > Pxy(x,y),

we obtain ), Pxy(z|y) =1

The implication is that the event {Y=y} is the new
sample space and X has a legitimate distribution
function in this new sample space.

Py(y) =2 . Pxy(z,y) = >, Prix(y | z)Px(z)

IS another version of the law of total probability.
33
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Independence between Random Variables

“random variables U and V' are independent”

1s equivalent to:

“the events U = v and V' = v are independent for
every u and v.”

Accordingly, random variables U and V' are inde-

pendent if and only if:
PUJ/(’UJ, U) — PU(’LL)Pv(’U) for all u,v.

An equivalent definition of independence between
U and V is Pyyy(u | v) = Py(u) for all u,v.

34
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Example

You roll a fair 6-side die twice. X is a result of the
first roll and Y is the result of the second roll.
Define U = max(X,Y) and V = min(X,Y).

Find: P(U=5|V=3)

35



Convolution
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Consider independent random variables V7 and V5

with probability functions Py, (vq) and Py, (vs2),

respectively.

Let V =V + V5.

The convolution of Py, (v1) and Py, (vg) is

Pv(’U)

P(Vi + Vo = v)
Y P(Vi=uv,Va=v—1)

U1

> Pui(v1) P (v —v1).

U1

36
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Question

Explain the last equation of convolution
using the Law of Total Probability.

Guide

The factor Py, (v — v1) represents
P(V = v | Vi = v1) (conditioning) and the
second is Py, (v1) (unconditioning).

37
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Now consider £ random variables X, :=1.2,3, ..., k.

Let Py, (x;) be the probability function of X;

k
Y = ZXZ-
=1

The convolution of the & probability functions is:

Py(y) = > (PX1 (y— i) || PXz-(ﬂ?z')) -

o, T3, ..., Tp: r2+x3+ ... +x<y 1=2

It all the X, are independent and identically
distributed (IID) random variables, with
probability function Px,(x), then Py (y) is called
the k-fold convolution of Px,(x).

38
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Some discrete random variables

1. Bernoulli  (with parameter p)

P X=1) = p “success”
P(X=0) = 1—p “failure”

2. Geometric (with parameter p)

The number of independent Bernoulli trials until the first success
PX=i)=(0—-p)p for i=1,2,3, ...

P(X >i)=(1-p)' fori=0,1,2, ..., and P(X > i) =1 fori < 0.

Geometric random variable is memoryless.

PIX>m+n|X>m)=P(X>n), m=0,1,2,..., n=0,1,2,...

It is the ONLY memoryless discrete random variable.

39
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3. Binomial (with parameters p and n)

The number of successes 1n n independent Bernoulli trials
: n : i :
P(X—@)—(,)pz(l—p)”z 1=20,1, 2, ..., n.
(

Can be used to model users activity.

A user 1s active with probability p and non-active with
probability 1-p.

X =1 1s the event where i users are active.

40



4. Poisson (with parameter \)

LN

!

P(X=i)=c¢ i=0. 1, 2. 3.

How to compute these values?

Use Recursion and start from values around A.

Set arbitrary initial value then normalize.

© Zukerman 2014-2015

41



© Zukerman 2014-2015

Poisson-Binomial Relationship
Consider a sequence of binomial random
variables X,,, n =1,2,... with parameters
(n, p) where A\ = np, or p = A/n. Then the
probability function

lim P(X,, =k)

n—0o0

1s a Poisson probability function with
parameter A\.

= Poisson can be used to model trathc
from a large number of sources.

42
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To prove this we write:

lim P(X, =k) = lim ("”’) pF(1 — p)n .

n—00 n—oo \ k
Substituting p = \/n, we obtain

' k n—~k
lim P(X, = k) = lim —— (A> (}-5) .

n—00 n—00 (n — k)!k! n

or

_ _ n! M A\ " A\ "
tiy P0G =) = i e () (1-3) (1-3)

Now notice that

)\ n
hm(LHJ S
n—0o0 T

43



and '
| n!
?’Lh—?c}o (n — k)Ink 1
Therefore,
| Nee=A
5 P =8 =5

QED.

© Zukerman 2014-2015
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Sum of two Poisson
Random variables

Let Y = Xl -+ X2
where X and X, are
two independent Pois-
son random variables
with parameters \;
and Ay, respectively.

Use convolution to
show that Y follows
a Poisson distribu-
tion with parameter
)\1 —|—)\2

© Zukerman 2014-2015

P(X1+X2 :k)

k

ZP({X1 =i} N{Xy =k —i})
k

Z ‘PXl(z)PXQ(k — 2)

' k—1
_ Z_ﬁe/\l A
21 (k=)
1=0

k

)\i )\k—i
—()\1—|—)\) 172
D

£k — 1)

e~ (Mi+Ao) i kN AR

Kl ik — i)l

1=0

—(M+r) K k , ,
€ 1 \k—1
— (Z) AL
1=0

e~ (N 4 \y)F

x QED
' 45
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5. Pascal (with parameters £ > 1,p € (0, 1])

The number of independent Bernoulli trials until the
kth success, or equivalently, sum of k£ geometric random
variables.

For Pascal random variable X, the event {X =7}

requires a “success” in the ¢th trial, and k—1 “successes”
in ¢ — 1 trials. These two events are independent. The
first is Bernoulli and the second is Binomial. Therefore,

. |
P(X =1) = (/i B 1)10’“(1—]))2’c =k, k+1, k+2, ... .

46
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6. Discrete Uniform

(with parameters a and b with b > a)

The discrete uniform probability function with
integer parameters a and b has equal non-zero

values for x = a,a+ 1,a+ 2,...,b. It is given
by

Px(il’)) —

b_éﬂ fr=aa+1,a+2,...,b
0 otherwise. |

Rolling a fair die is one example that govern by
this probability function with a = 1 and b = 6.

47
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Continuous Random Variables and Distributions

Now the set of possible outcomes is uncountable.

A continuous random variable X which assigns a real num-
ber to any outcome of an experiment, is characterized by
the existence of a function called the probability density
function (or simply the density) of X defined for all x € R,
which has the property that for any set A C R,

P(X € A) = /Af(x)dat.

To guarantee that all the relevant probabilities are
nonnegative (recall the first probability axiom),

we only consider nonnegative density functions.
48
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Let A = |a, b], we obtain,

Pla< X <b) = /bf(:t:)d:c.

Notice that the probability of a continuous random
variable taking a particular value is equal to zero.
If we set a = b in the above, we obtain

P(X =a) = /af(a:)da: = 0.

Theretfore, for continuous random variable X,
Fx(x)=P(X <z)=P(X <),
and P(X > z) = P(X > x).

49
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We obtain
Fx(x)=P(X <x) = f_ f(s)ds.

Hence, the probability density function f(x) is the
derivative of the distribution function Fx(x).

Notation: Fx(x) = F(x) and fx(z) = f(x)

Let X and Y be two continuous random variables.
The joint density of X and Y denoted fxy(z,y) is a
nonnegative function that satisfies

PUx.Y} eA) = | /{ o T ey

for any set A C R?.

50
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Equivalently to the discrete case:

fy(y) = /_OO [xy(z,y)dz.

Let X and Y be two continuous random variables with joint

density fxy(x,y). The conditional density of X given Y is

defined as

. fX,Y(xay)

For every given fixed y, it is a legitimate density because

> fX,Y(any)dx _ fY(?J)
o SfY(Y) fr(y)

[ vt s - - 1.

51
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By the definition of conditional density,

fxy(@,y) = fy(y)fxy(@|y)
= foo fxy(z,y)dy = /m @) fxy(z | y)dy

PU) = P(X € 4) = [ fx@ds= [ [ frlo) (e | y)dyd

= /Z fY(y)/AfXY(x | y)dxdy

/ Fr)P(A|Y = y)dy

and therefore

which is the continuous equivalence of the Law of Total

Probability.
52
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Example

Consider the following joint density:

2 0<z+y<1, 220, y=>0,

fX,Y(xv y) — {

0 otherwise.

1. Show that this is a legitimate density by showing
first that all relevant probabilities are nonnegative
and that the 2-dimensional integral of this joint
density over the entire state space is equal to 1.

2. Derive the marginal density fy(y).

3. Derive the conditional density fxyv(z | y).

53
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Please complete all steps in the following.

To show that this is a legitimate density observe that
the joint density is nonnegative and also

1 l—x
/ / 2dydx = 1.
0 Jo

01—y Ixy(x,y)de=2—-2y 0<y<1
fr(y) =

0 otherwise.
y 1
2—2y 1—y — —
fX]Y(x ’ y) =
0 otherwise.

54
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Convolution of continuous random variables

Consider independent random variables U and V.
Let X =U+V.

Fr(x) = / Fur () for (@ — ).

The latter is the convolution of the densities fy(u)

and fv(’l)).

55
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Convolution of k continuous random variables

As in the discrete case the convolution fy(y), of k densi-
ties fx, (x;), 1 =1,2,3, ..., k, of random variables X;,
1 =1,2,3, ..., k, respectively, is given by

oI (i)

And again, in the special case where all the random
variable X;, 1 =1,2.3, ..., k, are IID, the density fy
is the k-fold convolution of fx,.

56
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Equivalence between discrete and continuous random
variables and their probability functions/densities and
distributions

Discrete

Continuous

Py(y) =>_, Pxy(z,y)

- fi)ooo fX,Y(Ivy)d'/lj

P x,
Py (| y) = St

f x
fxiy(z | y) = Xf::((y)y)

P(A) =3 i, P(A] Bi) x P(By)

= [ fr()P(A|Y =y)dy

If X and Y are independent
Pxy(z | y) = Px()

Pxy(z,y) = Px(x)Py(y)

PVi+Vo=w) =3, Py(v1)Py(v—uv)

If X and Y are independent

PU+V =)= [ fulu)fv(z—u)du

fxpy(x | y) = fx(x)
fX,Y(ﬂf:y) = fx(z)fy(y)

57
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Some Continuous Random Variables

1. Uniform  (with parameters a,b)

Its probability density function is

( bi ifa<zxz<b
—Qa

flx) = <

. 0 otherwise.

A special case - uniform (0,1).
Its probability density function is

(1 ifo<z<1

flz) =

. 0 otherwise.

58
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Inverse transform sampling

Using uniform (0,1) deviates to generate sequence
of random deviates of any distribution

For any uniform (0,1) deviate U(0,1) and any CDF
F(z), set U(0,1) = F(xx), so x* = F~YU(0,1)) is the
corresponding random deviate from F'(z).

Why does it work? Let U be a uniform (0,1) ran-
dom variable. Let F(x) be an arbitrary CDF. Let
Y = F~}U). That is, U = F(Y). Now,

P(Y <z)=P[F'(U) <z] =PlU < F(x))].

Because U is a uniform (0,1) random variable, then
PlU < F(zx)| = F(x). Thus, P(Y <z)= F(x). QED

59
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Derive the convolution of two independent
uniform (0,1) random variables.

fx(x) = /fU(u)fv(.’l? — u)du

Since U and V' are uniform(0,1) random variables,
for fy(u)fy(x — u) to be non-zero, u and x must

satisty:
O<u<land0<z—u<1,
or

max(0,x — 1) < u < min(1, x)
and

0< <2,

60
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Therefore,

min(1,z)
U D<oz <2
fX (:Ij) — max(0,x—1)
0 otherwise.

or

min(1l,zr) —max(0,z —1) 0<x <2

fx(z) =

0 otherwise.

61
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Convolution of two independent
uniform (0,1) random variables

fx ()

62
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2. Exponential (with parameter p)

Density function:

f(:v):{ pe H it x >0

0 otherwise.
Cumulative Distribution Function (CDF):

S peds =1 —e " if x>0
F(z) = { 0 otherwise.

Complementary Distribution Function:

_ e M iftx >0
1 otherwise.
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Example

Show how to apply the Inverse transform sampling
to generate exponential deviates.

Guide

Due to symmetry, we can use the complementary distri-
bution function instead of the cumulative distribution
function. Set U(0,1) = F(z*) = e ", and obtain

InU(0,1) = —Az"

or

Tt =

- InU(0,1)
o
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Memorylessness

A continuous random variable is called memoryless if for
any t > 0and s > 0, P(X >s+t| X >1t) = P(X > s).
The following proves that the exponential random variable is
memoryless.

P(X >s+tNX >t)
P(X >1)
P(X >s+1)
P(X > 1)
e—H(s+1)

P X>s+t| X >t) =

e~ Ht
= e " =P(X > 3).

The exponential random variable is the ONLY
memoryless continuous random variable. (Recall that the Ge-
ometric is the ONLY memoryless discrete random variable.)
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The minimum of two independent
exponential random variables

Let X; and X5 be independent and exponentially

distributed random variables with parameters A\; and
Ao. Let X = min| Xy, X5]. Then

P(X >t) = P(min| X, X5| > 1)
= P(X; >t Xy > 1)

— e—Alte—AQt

_ 6_()\1+)\2)t.
Thus, the distribution of X is exponential with
parameter A\; + As.
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Competition between two independent
exponential random Variables

Let X7 and X9 be independent and exponentially disH

tributed random variables with parameters A\; and As.
What is the probability of X; < X357

By the continuous version of the law of total
probability,

P(Xl < XQ) — / (1 — €_>\1t)A2€_)\2tdt
0

A1
A1+ )\2.
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To understand the latter, note that Xy can obtain many
values: t1,t9,13, ..., iInfinitely many values ...

All these values, that X5 may take, lead to the events
X9 = t1, X9 = t9, X9 = t3,... that are mutually exclu-
sive and exhaustive.

Then, using the continuous version of the Law of Total
Probability, namely, integration of the product

P(X; < t) times the density of X at ¢, will give us the
probability of X; < Xs.

By integrating over all t we “add up” the probabili-
ties of infinitely many mutually exclusive and exhaus-
tive events that make up the event X; < Xy. And this
is exactly what the Law of Total Probability does!
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Relationship between the memoryless ran-
dom variables: Exponential and (Geometric

Let X.,, and X,., be exponential and geometric random vari-
ables with parameters A and p, respectively. Let 0 be an “in-
terval” size used to discretize the continuous values that X,

takes, and we are interested to find ¢ such that
FXexp(n5):FXgeo(n)7 n:1,2,3,....

To this end we consider the complementary distributions and

aim to find 0 that satisfies P(Xcz, > nd) = P(Xjeo > 1),

ore M =(1—-p)",ore=1—p,orp=1—e"

We can observe that as the interval size 0 approaches zero the
probability of success p also approaches zero, and under these
conditions the two distributions approach each other.
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3. Hyper-Exponential

Let X; for ¢+ = 1,2,3, ..., k be k independent ex-
ponential random variables with parameters \;, 1 =
1,2,3, ..., k, respectively. Let p; for:=1,2,3, ..., k

be k nonnegative real numbers such that Zle pi = 1.
A random variable X that is equal to X; with probabil-
ity p; is called Hyper-exponential. By the Law of total
probability, its density is

k
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4. Erlang (with parameters k and \)

A random variable X has Erlang distribution with pa-
rameters A (positive real) and k (positive integer) if its
density is given by

A\ pk—1 o=z
Let X;, 2 =1, 2, ..., k, be k independent exponen-

tially distributed random variables each with parameter
A, prove by induction that the random variable X de-
fined by the sum X = Zle X; has Erlang distribution
with parameters £ and .

Complete the other homework problems in the textbook
on Erlang random variable.
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5. Hypo-Exponential

Let X;, 2 =1, 2, ..., k be k independent expo-
nentially distributed random variables each with
parameters \;, respectively.

The random variable X defined by the sum X =
Zle X,; 1s called hypo-exponential. In other

words, the density of X is a convolution of the
k densities \je ™%, i =1, 2, ..., k.

The Erlang distribution is a special case of hypo-
exponential when all the k& random variables are
identically distributed.
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6. (Gaussian (with parameters m and o?)

The Gaussian random variable X with parameters
m and o has the following density:.

1
fx(z) = 5 e~ (@=m)*/20° — 00 < < Q.
o

This density is symmetric and bell shaped.

Very widely used due to the The central limit
theorem which says that the sum of a large num-
ber of independent random variables (not necessar-
ily of the same distribution, but each has a finite
variance) has Gaussian (normal) distribution.
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7. Pareto (with parameters « and ¢)

It is useful in modelling lengths of data bursts in
data and multimedia networks.

Its complementary distribution function is defined
by

OREET
1, otherwise.

P(X>:c):{

Here 0 > 0 is the scale parameter representing a
minimum value for the random variable, and v > 0
is the shape parameter of the Pareto distribution.
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Mean

The mean, or the expectation, of a discrete ran-
dom variable is defined by

E|X]| = Z nPx(n).

{n:Px(n)>0}

This is related to the term average discussed be-
fore in the context of limiting relative frequency.

Equivalently, the mean of a continuous random
variable is defined by

E[X] = /OO z fx(z)dz.

— 00
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Example

Consider the following probability function:

0.2 x =

0.3 =2
P(X=2)=9 03 »—3

0.2 =4

Find the mean of X.

Solution:

EFlX]=1%x02+2x03+3%x03+4x0.2=2.5
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As mentioned before, a function of a random
variable is also a random variable.

Mean of a function of discrete random
variables:

Elg(X)]= »  g(k)Px(k)

Mean of a function of continuous random
variables:

Elg(X)] = /OO g(x) fx(z)dx

— OO
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If a and b are constants then for a random variable
X (either discrete or continuous) we have:

FlaX]| = aF[X],

E[X —b] = E[X] — b,

and
ElaX —b| = aFE[X]| — 0.

For random variables X1, Xs, ... X, (not necessar-
ily independent) we have:

E[ZXz] — ZE[Xz]
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r

I'he nth moment of the random variable X is
defined by E|[X™]. Substituting g(X) = X" in the
definitions of F|g(X)], the nth moment of X is
given by:

BIXY = S kPy(k)

for a discrete random variable and
EX" = / " fx(x)dx

for a continuous random variable.
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The nth central moment of random variable X
is defined by E[(X —FE|X])"]. Substituting g(X) =
(X — EX])" in the definitions of E{g(X)]|, the nth
central moment of X is given by:

E(X —EX])" = >  (k—E[X])"Px(k)
{k:P(k)>0}

for a discrete random variable and

EI(X - B - | " (@ — EX])" fx (2)da

— O

for a continuous random variable.
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The mean is the first moment.

The variance is the second central moment defined by:
Var[X] = E[(X — E[X))?.
The variance of a discrete random variable X 1is

Var(X]= 3 (k= E[X])*Px(k)

{k:P(k)>0}

The variance of a continuous random variable X is

Var(X] = /_OO (x — BE[X])*fx(z)dz.

(. @]

Another equation for the variance can be obtained by
Var[X] = E[(X-E[X])"] = E[X*-2X E[X]+(E[X])’] = E[X"]-(E[X])*.
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Example

Consider again the following probability function:

0.2
0.3
0.3
0.2

Find the variance of X.

Solution:

We already know that E|X| = 2.5,
so Var[X] = (1 —-2.5)*x 0.2+ (2—2.5)* x 0.3 +
(3—2.5)?x 0.3+ (4—2.5)*x0.2=1.05
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An Alternative Solution:

Now we solve the same problem using the formula

Var[X] = E[X?] — (E[X])”

We already know that

(E[X])? = (2.5)* = 6.25,

and

E[X?] = 1°x0.242°x0.343°x0.34+4°x 0.2 = 7.3.
Then,

Var[X] = E[X? — (E[X]?) = 7.3 —6.25 = 1.05.
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If a is a constant then for a random variable X (either
discrete or continuous) we have:

Var[aX] = a*Var[X],

If the random variables X;, X5, X3, ..., X, are
independent, then

Z X@} — Z Var[X;).

The standard deviation of r.v. X is:

Var

ox =/ Var[X].

When X is obvious, we use o for the standard deviation.
Hence the variance is often denoted by 2.
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Covariance and Correlation

The covariance of two random variables X; and Xj,
denoted by cov(X7, X»), is defined by

cou(X1, Xo) = E[(X) — E[X1])(Xa — E[Xa])].

The larger the dependency, the larger the covariance.

The variance of the sum of two random variables X and
Xy 1s given by

Var| X, + Xs] = Var[Xi] + Var|Xs] + 2cov( X7, Xa).
If X7 and Xy are independent, then cov(Xy, X5) =0, so

Var| X, + Xs| = Var| X ] + Var[Xs].

85



© Zukerman 2014-2015

Problem

Prove that cov(Xi, X3) = 0 does not
necessarily imply that X; and X, are
independent.
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Problem

Prove that cov(Xi, X5) = 0 does not necessarily imply
that X; and X, are independent.

Guide
The proof is by a counter example.

Consider two random variables X and Y and assume
that both have Bernoulli distribution with parameter p.

Consider random variable X; defined by X; = X +Y
and another random variable X5 defined by Xy = X —Y.
Show that cov(X7, X3) = 0 and that X; and X, are not
independent.
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The covariance can take any value between —oo and
+00, and in some cases, it is convenient to have a nor-
malized dependence measure - a measure that takes val-
ues between -1 and 1. Such measure is the correlation.
Notice that the covariance is bounded by

cov( X1, Xs) < \/Va/r[Xl]Vaxr[Xg],

the correlation of two random variables X and Y de-
noted by corr(X,Y) is defined by

cov(X,Y)

Ox0y

assuming Var|X| # 0 and Var|Y] # 0.

corr(X,Y) =
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Homework

Consider an experiment of tossing a die with 6 sides. Assume
that the die is fair, i.e., each side has the same probability
(1/6) to occur. Consider a random variable X that takes the
value 7 if the outcome of the toss is 7, for 2 =1,2,3,--- , 0.

1. Find F|X], Var|X] and ox.
2. Plot the probability function, cumulative distribution
function and the complementary distribution function of X.

Some answers

E[X] = 3.5; E[X?] = 15.16666667; Var[X] = 2.916666667:
ox = 1.707825128.
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Homework

Consider an exponential random variable with parame-
ter A. Derive its mean and Variance.

Guide
Find the mean by

E|X] = / rhe Mdx.
0
Use integration by parts to show that:

00 1
L —A\z]° -\ .
E[X]— — e }0 —|—/0 e dCU—X
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Guide (continued)

Then use integration by parts to derive the second mo-
ment. Understand and verify the following derivations:

B[X?] = / 2 \e Mdx
0

0

2 2
_ 2 _—A\x — AT —\T
= <—ZC (& — Xﬂfe — ﬁe )]0

— —$26)‘ﬂ00+2/ re Mdx
0
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Sample Mean and Sample Variance

Consider a sample of n realizations of a random variable

X, denoted X (1), X(2), ..., X(n)

The Sample Mean

1s an estimator for the mean of X.

The Sample Variance

Sv _ Z?:l[X(z) o SmP

n—1

n>1

1s an estimator for the variance of X.

The sample standard deviation is v/.9,.
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Homework

Consider the following data for students heights
(in cm) taken from a sample of 10 students: 172,
178, 162, 167, 168, 175, 182, 161, 171, 170.

Compute the sample mean, the sample variance
and the sample standard deviation.

Answers

Sample Mean = 170.6
Sample Variance = 43.6
Sample Standard Deviation = 6.603029608
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Homework

Generate 10 deviates from an exponential distri-
bution of a given mean and compute the Sample
Mean and Sample Variance. Compare them with
the real mean and variance. Then increase the
sample to 100, 1000, ..., 1,000,000. Observe the
difference between the real mean and variance and
the sample mean and variance. Repeat the ex-
periment for a Pareto deviates of the same mean.
Discuss differences.

Use your generated data of random deviates to
compare between the exponential and Pareto den-
sities and the equivalent histograms. Use small
enough ranges to achieve good fit.
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Conditional Expectation (or Mean)

E[X | Y] denotes the conditional expectation of random
variable X given the event {Y = y} for each relevant value
of v.

The conditional expectation of two discrete random
variables is defined by

EX|Y=jl=) iP(X=i|Y =)

1

If X and Y are continuous, their conditional expectation
is defined as

o0

EX|Y =)= [ afavle]y)de

r=——=0oo
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FE|X | Y] is itself a random variable which is a function of
the random variable Y. Therefore, for discrete random
variables:

Ey[EIX |Y] = ) EX|Y =jP(Y =)
— SJ:S:Z'P(X_HY_j)P(Y—j)
— ;:z‘;:P(X =i|Y =j)PY =)
- ;iPJ(X =1i) = BE[X].
Thus,

E|X] = Ey[EIX | Y]]
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For continuous random variables:

Ey[E[X | Y] = /OO E[X |Y = ylfy (y)dy

_ / B /_OoccfX|y v | y)da fy (y)dy

/_oo / N fxiy (@ | y) fy(y)dydx
B /woome r)dz = E[X].

Thus,
E[X] = Ey[E[X | Y]].

Homework: Show that the latter holds also for the case

where X is discrete and Y is continuous and vice versa.
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Question

Let X be a geometric random variable. Use the
concept of conditional expectation to derive F|X]|.

Guide

Condition on the result of the first Bernoulli trial
and obtain F|X]| = p(1)+ (1 —p)(1 + E|X]) and
then solve it to obtain E|X]| = 1/p.
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Note that P(X = x | Y = y) is itself a random variable
that is a function of the values y taken by random variable

Y.

Theretore, by definition
Ey[P(X =z |Y =y)]=) P(X=z|Y=y)PY =y)
y
which lead to another way to express the Law of Total
Probability:
Px(z) = Ey|P(X =z | Y =y)].

Henceforth, we normally ommit the subsript X or Y for
mean, variance and probability notations.
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Define the Conditional Variance as
Var[X | Y] = E[(X — E[X | Y])?|Y].

This gives rise to the following useful formula for the vari-
ance of a random variable known as EVVE:

Var[X] = EVar|X | Y]] + Var[E[X | Y]].

Homework: Try to prove it, and if you are not successful,
see my book or other sources.
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Example

The number of Internet flows that arrive at a
router per second is ¢ which has mean ¢, and
variance ¢,. The number of packets in each flow
is ¢ which has mean ¢ and variance ¢,. Assume
that ¢ and ¢ are independent. The total num-
ber of packets arriving at the router per second
is W which has mean W, and variance W,. As-
sume W = ¢¢. To meet certain quality of service
requirements, it is required that the router has the
capacity to serves the arriving packets at the rate

of s, = W, + 4+/W, per second. Find s,.
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Solution

To compute s, one needs to have the values of
W, and W,. Because ¢ and ¢ are independent
E\W|¢| = ¢s. and therefore

W, = E|W| = E[E[W|¢]] = E||E[s] = dese.
By EVVE,
Var[W] = E[Var[W|¢]]+Var[E[W|¢]] = ¢, E[¢*]+(s)*Var[g)].
Therefore

W’U — ¢,U§,U + gv¢2 + é’vgg'
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of some of the above-mentioned random variables.
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I.V. parameters mean variance
Bernoulli 0<p<l1 P p(1 —p)
geometric 0<p<l1 1/p (1—p)/p?
binomial nand 0 <p<1 np np(1l — p)

Poisson A>0 A A
discrete uniform a and b (a+0)/2 | [(b—a+1)*—1]/12
uniform a and b (a+b)/2 (b—a)?/12
exponential >0 1/ 1/p?
Gaussian m and o m o?
Pareto d0>0and 1<y <2|dy/(y—1) 00
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The Central Limit Theorem

Let X4, X9, X3, ..., X, be k independent and identically
distributed (IID) random variables with common mean \
and variance o?. Define random variable Y;. as

X+ Xo+ Xzt o+ X — kA

Y,
k ok

Then,
lim P(Yy <y) = P(y)

k— 00

where ®(-) is the distribution function of a standard Gaus-
sian random variable given by

1 J —t2/2
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The central limit theorem i1s considered the
most important result in probability.

It implies that for large k, the sum of k£ IID
random variable with common mean A and
variance o is approximately Guassian with
mean kA and variance ko? regardless of the
distribution of these variables.

Furthermore, under certain conditions, the
central limit theorem also applies in the case

of sequences that are not identically dis-
tributed.
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Homework:
Observe the following behavior of the
Poisson probability function and provide

explanation.
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Poisson Probability function with A=1
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Poisson Probability function with A= 10
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Poisson Probability function with A= 100
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Poisson Probability function with A= 1000
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Poisson Probability function with 2= 10000
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Link Dimensioning

We will consider several scenarios of sources
(individuals or families) sharing a commu-
nication link. Each of the sources has cer-
tain requirements for capacity and the com-
mon link must be dimensioned in such a way
that minimizes the cost for the telecommu-
nications provider, but still meets the indi-
vidual QoS requirements. The link dimen-
sioning procedures that we consider apply to
user requirements for capacity either upload

or download.
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Case 1: Homogeneous Individual Sources

Consider N independent sources (end-terminals),
sharing a transmission link of capacity C' [Mb/s].
Any of the sources transmits data in accordance
with an on-off process. That is, a source alternates
between two states: 1) the on state during which
the source transmits at a rate R [Mb/s|, and 2) the
off state during which the source is idle. Assume
that the proportion of time the source is in the
on-state is p, so it is in the off-state 1 — p of the
time. The question is how much capacity should
the link have so it can serve all N sources such
that the probability that the demand exceeds the
total link capacity is no higher than «.
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Without loss of generality, let us normalize the
tratfic generated by a source during on period by
setting R = 1.

The demand generated by a single source is
Bernoulli distributed with parameter p, so the de-
mand generated by all NV sources has Binomial dis-
tribution with parameters p and V.

Accordingly, finding the desired capacity is re-
duced to finding the smallest C' such that

i (jj)pi(l -p)" ' <a

1=C+41
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It V is large we can use the central limit
theorem and approximate the Binomial
distribution by a Gaussian distribution.

Accordingly, the demand can be
approximated by a Gaussian random
variable with mean Np and variance

Np(1 —p) and finding C¢ such that the
probability of our Gaussian random variable
to exceed Cg 1S a.
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It 1s well known that Gaussian random variables
obey the so-called 68-95-99.7% Rule which means
that the following apply to a random variable X
with mean m and standard deviation o.

Pm—-—oc<X<m+o0) = 0.68
Pim—-20 <X <m+20) = 095
P(m—30 <X <m+30) = 0.997.

Therefore, if o = 0.0015 then Cg should be three
standard deviations above the mean, namely,

CG — Np+3\/Np(1 —p).
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Recall that for our original problem,
before we introduced the Gaussian
approximation, C' = N guarantees that
there 1s sufficient capacity to serve all
arriving traffic without losses.
Therefore, we set our dimensioning rule
for the optimal C value as follows:

Copt = min _N, Np + 3v/Np(1 —p)_.
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Case 2: Non-homogeneous Individual Sources

Now we generalize the above scenario to the case where
the traflic and the peak rates ot different sources can be
different.

In this case where the sources are non-homogeneous, we
must invoke a generalization of the central limit theo-
rem that allows for non IID random variables (i.e., the
so-called “Lyapunov’s central limit theorem”).

Consider N sources where the 7th source transmits at
rate R; with probability p;, and at rate 0 with probabil-
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Let Rx (i) be a random variable representing the rate
transmitted by source 2. We obtain:

ERx ()] = piR;.
and
Var[Rx(i)] = R?p; — (Ripi)* = R2p;(1 — py).

The latter is consistent with the fact that Rx(7) is equal
to R; times a Bernoulli random variable.
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We now assume that the random variable

g = Z Rx (1)

has a (Gaussian distribution with mean

ZE (R (i sz

and variance
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Notice that the allocated capacity should not
be more than the total sum of the peak rates
of the individual sources. Therefore, in this
more general case, for the QoS requirement
o = 0.0015, our optimal C' value is set to:

N
Copt = min Z R;, E[Xg] + 3/ Var[Xg]|.

=1

For lower « value, mean + 4 or even 5 stan-
dard deviations may be required
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Homework

There are 20 sources each transmits at a peak-rate of 10
Mb/s with probability 0.1 and is idle with probability
0.9, and there are other 80 sources each transmits at a
peak-rate of 1 Mb/s with probability 0.05 and is idle
with probability 0.95.

A service provider aims to allocate the minimal capacity
Cope such that no more than 0.0015 of the time, the
demand of all these 100 sources exceeds the available
capacity. Find an appropriate Cy;.
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Answer: C,,; = 64.67186 Mb/s.

Notice the difference in contributions to the total
variance of sources from the first group versus such
contributions of sources from the second group.

Consider a range of examples where the variance is
the dominant part of C,, versus examples where the
variance is not the dominant part of Cl,.

123



	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Example
	Please complete all steps in the following.
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Some Continuous Random Variables
	Inverse transform sampling
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Example
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Slide Number 95
	Slide Number 96
	Slide Number 97
	Slide Number 98
	Slide Number 99
	Slide Number 100
	Slide Number 101
	Slide Number 102
	Slide Number 103
	Slide Number 104
	Slide Number 105
	Slide Number 106
	Slide Number 107
	Slide Number 108
	Slide Number 109
	Slide Number 110
	Slide Number 111
	Slide Number 112
	Slide Number 113
	Slide Number 114
	Slide Number 115
	Slide Number 116
	Slide Number 117
	Slide Number 118
	Slide Number 119
	Slide Number 120
	Slide Number 121
	Slide Number 122
	Slide Number 123

